fastdata
is a minimal library for generating synthetic data for
training deep learning models. For example, below is how you can
generate a dataset to train a language model to translate from English
to Spanish.
First you need to define the structure of the data you want to generate.
claudette
, which is the library that fastdata uses to generate data,
requires you to define the schema of the data you want to generate.
from fastcore.utils import *
class Translation():
"Translation from an English phrase to a Spanish phrase"
def __init__(self, english: str, spanish: str): store_attr()
def __repr__(self): return f"{self.english} ➡ *{self.spanish}*"
Translation("Hello, how are you today?", "Hola, ¿cómo estás hoy?")
Hello, how are you today? ➡ *Hola, ¿cómo estás hoy?*
Next, you need to define the prompt that will be used to generate the data and any inputs you want to pass to the prompt.
prompt_template = """\
Generate English and Spanish translations on the following topic:
<topic>{topic}</topic>
"""
inputs = [{"topic": "Otters are cute"}, {"topic": "I love programming"}]
Finally, we can generate some data with fastdata.
Note
We only support Anthropic models at the moment. Therefore, make sure
you have an API key for the model you want to use and the proper
environment variables set or pass the api key to the
FastData
class FastData(api_key="sk-ant-api03-...")
.
from fastdata.core import FastData
fast_data = FastData(model="claude-3-haiku-20240307")
translations = fast_data.generate(
prompt_template=prompt_template,
inputs=inputs,
schema=Translation,
)
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.57it/s]
from IPython.display import Markdown
Markdown("\n".join(f'- {t}' for t in translations))
- I love programming ➡ Me encanta la programación
- Otters are cute ➡ Las nutrias son lindas
Install latest from the GitHub repository:
$ pip install git+https://github.com/AnswerDotAI/fastdata.git
or from pypi
$ pip install python-fastdata
If you’d like to see how best to generate data with fastdata, check out our blog post here and some of the examples in the examples directory.
If you are new to using nbdev
here are some useful pointers to get you
started.
# make sure fastdata package is installed in development mode
$ pip install -e .
# make changes under nbs/ directory
# ...
# compile to have changes apply to fastdata
$ nbdev_prepare