-
Notifications
You must be signed in to change notification settings - Fork 351
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
This implements the algorithm of Hockney, Methods Comp. Phys. 9 (1970), 136-210 for solving Poisson's equation with open boundaries.
- Loading branch information
1 parent
f46a4e5
commit 064e9c7
Showing
13 changed files
with
465 additions
and
25 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
#ifndef AMREX_FFT_OPENBC_SOlVER_H_ | ||
#define AMREX_FFT_OPENBC_SOlVER_H_ | ||
|
||
#include <AMReX_FFT_R2C.H> | ||
|
||
#include <AMReX_VisMF.H> | ||
|
||
namespace amrex::FFT | ||
{ | ||
|
||
template <typename T = Real> | ||
class OpenBCSolver | ||
{ | ||
public: | ||
using MF = typename R2C<T>::MF; | ||
using cMF = typename R2C<T>::cMF; | ||
|
||
explicit OpenBCSolver (Box const& domain); | ||
|
||
template <class F> | ||
void setGreensFunction (F const& greens_function); | ||
|
||
void solve (MF& phi, MF const& rho); | ||
|
||
[[nodiscard]] Box const& Domain () const { return m_domain; } | ||
|
||
private: | ||
Box m_domain; | ||
R2C<T> m_r2c; | ||
cMF m_G_fft; | ||
}; | ||
|
||
template <typename T> | ||
OpenBCSolver<T>::OpenBCSolver (Box const& domain) | ||
: m_domain(domain), | ||
m_r2c(Box(domain.smallEnd(), domain.bigEnd()+domain.length(), domain.ixType())) | ||
{ | ||
auto [sd, ord] = m_r2c.getSpectralData(); | ||
amrex::ignore_unused(ord); | ||
m_G_fft.define(sd->boxArray(), sd->DistributionMap(), 1, 0); | ||
} | ||
|
||
template <typename T> | ||
template <class F> | ||
void OpenBCSolver<T>::setGreensFunction (F const& greens_function) | ||
{ | ||
auto* infab = detail::get_fab(m_r2c.m_rx); | ||
auto const& lo = m_domain.smallEnd(); | ||
auto const& lo3 = lo.dim3(); | ||
auto const& len = m_domain.length3d(); | ||
if (infab) { | ||
auto const& a = infab->array(); | ||
auto box = infab->box(); | ||
GpuArray<int,3> nimages{1,1,1}; | ||
for (int idim = 0; idim < AMREX_SPACEDIM; ++idim) { | ||
if (box.smallEnd(idim) == lo[idim] && box.length(idim) == 2*len[idim]) { | ||
box.growHi(idim, -len[idim]+1); // +1 to include the middle plane | ||
nimages[idim] = 2; | ||
} | ||
} | ||
AMREX_ASSERT(nimages[0] == 2); | ||
box.shift(-lo); | ||
amrex::ParallelFor(box, [=] AMREX_GPU_DEVICE (int i, int j, int k) | ||
{ | ||
if (i == len[0] || j == len[1] || k == len[2]) { | ||
a(i+lo3.x,j+lo3.y,k+lo3.z) = T(0); | ||
} else { | ||
auto ii = i; | ||
auto jj = (j > len[1]) ? 2*len[1]-j : j; | ||
auto kk = (k > len[2]) ? 2*len[2]-k : k; | ||
auto G = greens_function(ii+lo3.x,jj+lo3.y,kk+lo3.z); | ||
for (int koff = 0; koff < nimages[2]; ++koff) { | ||
int k2 = (koff == 0) ? k : 2*len[2]-k; | ||
if (k2 == 2*len[2]) { continue; } | ||
for (int joff = 0; joff < nimages[1]; ++joff) { | ||
int j2 = (joff == 0) ? j : 2*len[1]-j; | ||
if (j2 == 2*len[1]) { continue; } | ||
for (int ioff = 0; ioff < nimages[0]; ++ioff) { | ||
int i2 = (ioff == 0) ? i : 2*len[0]-i; | ||
if (i2 == 2*len[0]) { continue; } | ||
a(i2+lo3.x,j2+lo3.y,k2+lo3.z) = G; | ||
} | ||
} | ||
} | ||
} | ||
}); | ||
} | ||
|
||
m_r2c.forward(m_r2c.m_rx); | ||
|
||
auto [sd, ord] = m_r2c.getSpectralData(); | ||
amrex::ignore_unused(ord); | ||
auto const* srcfab = detail::get_fab(*sd); | ||
if (srcfab) { | ||
auto* dstfab = detail::get_fab(m_G_fft); | ||
if (dstfab) { | ||
#if defined(AMREX_USE_GPU) | ||
Gpu::dtod_memcpy_async | ||
#else | ||
std::memcpy | ||
#endif | ||
(dstfab->dataPtr(), srcfab->dataPtr(), dstfab->nBytes()); | ||
} else { | ||
amrex::Abort("FFT::OpenBCSolver: how did this happen"); | ||
} | ||
} | ||
} | ||
|
||
template <typename T> | ||
void OpenBCSolver<T>::solve (MF& phi, MF const& rho) | ||
{ | ||
auto& inmf = m_r2c.m_rx; | ||
inmf.setVal(T(0)); | ||
inmf.ParallelCopy(rho, 0, 0, 1); | ||
|
||
m_r2c.forward(inmf); | ||
|
||
auto scaling_factor = T(1) / T(m_r2c.m_real_domain.numPts()); | ||
|
||
auto const* gfab = detail::get_fab(m_G_fft); | ||
if (gfab) { | ||
auto [sd, ord] = m_r2c.getSpectralData(); | ||
amrex::ignore_unused(ord); | ||
auto* rhofab = detail::get_fab(*sd); | ||
if (rhofab) { | ||
auto* pdst = rhofab->dataPtr(); | ||
auto const* psrc = gfab->dataPtr(); | ||
amrex::ParallelFor(rhofab->box().numPts(), [=] AMREX_GPU_DEVICE (Long i) | ||
{ | ||
pdst[i] *= psrc[i] * scaling_factor; | ||
}); | ||
} else { | ||
amrex::Abort("FFT::OpenBCSolver::solve: how did this happen?"); | ||
} | ||
} | ||
|
||
m_r2c.backward_doit(phi, phi.nGrowVect()); | ||
} | ||
|
||
} | ||
|
||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.