-
Notifications
You must be signed in to change notification settings - Fork 0
/
ga_pid2.py
56 lines (43 loc) · 1.79 KB
/
ga_pid2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import random
import numpy as np
from pid_fitness import pid2_fitness
POP_SIZE = 5000
NUM_GENERATIONS = 100
K_MAX = 15
K_MIN = 0.001
def fitness(chromosome):
return pid2_fitness(chromosome[0], chromosome[1], chromosome[2], 1)
# init
pop = []
for i in range(POP_SIZE):
chromosome = [np.random.uniform(K_MIN, K_MAX) for j in range(3)]
pop.append(chromosome)
# print(pop)
for generation in range(NUM_GENERATIONS):
fitness_score = [fitness(chromosome) for chromosome in pop]
print('round {}, best score {}'.format(generation, max(fitness_score)))
parents = []
for i in range(POP_SIZE // 2):
tournament_size = 50
contestants = random.sample(range(POP_SIZE), tournament_size)
winner = max(contestants, key=lambda x: fitness_score[x])
parents.append(pop[winner])
contestants.remove(winner)
loser = max(contestants, key=lambda x: fitness_score[x])
parents.append(pop[loser])
offspring = []
for i in range(POP_SIZE):
parent1, parent2 = random.sample(parents, 2)
crossover_point = random.randint(1, len(parent1) - 1)
child = parent1[:crossover_point] + parent2[crossover_point:]
mutation_prob = 0.1
if random.random() < mutation_prob:
mutation_point = random.randint(0, len(child) - 1)
child[mutation_point] = np.random.uniform(K_MIN, K_MAX)
offspring.append(child)
pop = offspring
best_chromosome = max(pop, key=lambda x: fitness(x))
print("Best parameters:\nKp = {}\nTi = {}\nTd = {}".format(best_chromosome[0],
best_chromosome[1],
best_chromosome[2]))
print("Fitness score:", fitness(best_chromosome))