-
Notifications
You must be signed in to change notification settings - Fork 9
/
finetune.py
252 lines (228 loc) · 10 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# encoding:utf-8
import torch
import torchvision
import torch.optim as optim
import torchvision.transforms as transforms
import torch.nn as nn
from torch.autograd import Variable
import data
from collections import OrderedDict
import os
import torch.backends.cudnn as cudnn
import math
from config import opt
import time
from data.dataset import MyDataset
from models import FBC
import numpy as np
import scipy.io as sio
from PIL import Image
import random
import argparse
import sys
acc_list = [0.0]
loss_list = [0.0]
criterion = nn.CrossEntropyLoss()
def train(epoch, lr):
print('model_name_pre:',args.model_name_pre)
print('bs',args.train_bs)
print('SC beta:', args.BETA)
print('rank:',args.RANK_ATOMS)
print('num cluster:',args.NUM_CLUSTER)
print('save_low_bound:',args.save_low_bound)
print('weight_decay:',args.weight_decay)
if args.DTD:
print('dataset:','DTD')
elif args.Aircraft:
print('dataset:','Aircraft')
elif args.CUB:
print('dataset:','CUB')
elif args.INDOOR:
print('dataset:','INDOOR')
elif args.MINC2500:
print('dataset:','MINC2500')
epoch_start = time.time()
features_lr = lr * 0.1
if features_lr <= 0.0001:
features_lr = 0.0001
optimizer = optim.SGD(
[
{'params': model.features.parameters(), 'lr':features_lr},
{'params': model.Linear_dataproj_k.parameters(), 'lr': lr},
{'params': model.Linear_dataproj2_k.parameters(), 'lr': lr},
{'params': model.Linear_predict.parameters(),'lr':lr},
],
lr=lr, momentum=0.9, weight_decay=args.weight_decay)
model.train()
start = time.time()
running_loss = 0.0
train_bs = args.train_bs
train_len = len(trainset)
for batch_idx, (data, target) in enumerate(trainloader):
if (batch_idx+1) * train_bs > train_len:
break
data = Variable(data)
target = Variable(target)
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
running_loss += loss.data.item()
optimizer.step()
if batch_idx % (args.train_print_freq/args.train_bs) == 0 and batch_idx != 0:
loss_tmp = running_loss / (args.train_print_freq/args.train_bs) #div the n of batch
interval = time.time() - start
start = time.time()
print('Epoch:{}[{}/{} ]\tLoss:{:.6f}\tLR:{}\tbeta:{}\ttime:{:.2f}'.format(
epoch, batch_idx * len(data), train_len, loss_tmp, lr, model.sc.beta, interval/60))
running_loss = 0.0
epoch_end = time.time()
tmp = (epoch_end - epoch_start) / 60
print('train time:{:.4f} min'.format(tmp))
def test():
model.eval()
test_loss = 0
correct = 0
start = time.time()
test_bs = args.test_bs
test_len = len(testset)
for batch_idx, (data, target) in enumerate(testloader):
if (batch_idx+1) * test_bs > test_len:
break
data = Variable(data)
target = Variable(target)
data, target = data.cuda(), target.cuda()
output = model(data)
test_loss += criterion(output, target).data.item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss = test_loss / (test_len / args.test_bs)
loss_list.append(round(test_loss, 4))
acc = 100.0 * float(correct) / test_len
acc = round(acc, 4)
interval = time.time() - start
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\ttime:{:.2f}\n'.format(
test_loss , correct, test_len, acc, interval/60))
model_name = './tmp/' + args.model_name_pre + str(acc) + 'lr_' + str(lr) + '.pth'
acc_max = max(acc_list)
if acc > acc_max and acc > args.save_low_bound:
torch.save(model.state_dict(), model_name)
print('i have saved the model')
acc_list.append(acc)
acc_max = max(acc_list)
print('max acc:', acc_max)
print('acc list:', acc_list)
print('loss list:', loss_list)
def parse_args(*args):
parser = argparse.ArgumentParser()
parser.add_argument('-DTD','--DTD', default=opt.DTD)
parser.add_argument('-CUB','--CUB', default=opt.CUB)
parser.add_argument('-INDOOR','--INDOOR', default=opt.INDOOR)
parser.add_argument('-MINC2500','--MINC2500', default=opt.MINC2500)
parser.add_argument('-data_path','--data_path', default=opt.data_path)
parser.add_argument('-train_txt_path','--train_txt_path', default=opt.train_txt_path)
parser.add_argument('-test_txt_path','--test_txt_path', default=opt.test_txt_path)
parser.add_argument('-class_num','--class_num', default=opt.class_num)
parser.add_argument('-res_plus','--res_plus', type=int, default=opt.res_plus)
parser.add_argument('-res','--res', type=int, default=opt.res)
parser.add_argument('-lr','--lr', type=float, default=0.01)
parser.add_argument('-lr_scale','--lr_scale', type=float, default=opt.lr_scale)
parser.add_argument('-train_bs','--train_bs', type=int, default=opt.train_bs)
parser.add_argument('-device','--gpu_device', default=opt.gpu_device)
parser.add_argument('-rank','--RANK_ATOMS', type=int, default=opt.RANK_ATOMS)
parser.add_argument('-k','--NUM_CLUSTER', type=int, default=opt.NUM_CLUSTER)
parser.add_argument('-beta','--BETA', type=float, default=opt.BETA)
parser.add_argument('-model_name_pre','--model_name_pre', default=opt.model_name_pre)
parser.add_argument('-model_path','--model_path', default=opt.model_path)
parser.add_argument('-save_low_bound','--save_low_bound', type=float, default=opt.save_low_bound)
parser.add_argument('-weight_decay','--weight_decay', type=float, default=5e-4)
parser.add_argument('-train_print_freq','--train_print_freq', type=int, default=opt.train_print_freq)
parser.add_argument('-test_bs','--test_bs', type=int, default=opt.test_bs)
parser.add_argument('-test_epoch','--test_epoch', type=int, default=opt.test_epoch)
parser.add_argument('-pretrained','--pretrained', default=opt.pretrained)
parser.add_argument('-pre_model_path','--pre_path', default=opt.pre_path)
parser.add_argument('-model_name','--model_name', default=opt.model_name)
parser.add_argument('-use_gpu','--use_gpu', default=opt.use_gpu)
parser.add_argument('-max_epoches','--max_epoches', type=int, default=opt.max_epoches)
args = parser.parse_args()
return args
def main(argv):
global args
global model
args = parse_args(argv)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_device
if args.model_name == 'FBC':
print('model:','FBC')
model = FBC()
else:
print('model error')
model.cuda()
if args.model_path:
print('i am load model', args.model_path)
pre_model = torch.load(args.model_path)
model_dict = model.state_dict()
pre_dict = {k:v for k, v in pre_model.items() if k in model_dict}
print('pre dict len:',len(pre_dict))
model_dict.update(pre_dict)
model.load_state_dict(model_dict)
elif args.pretrained:
print('l am loading pre model', args.pre_path)
pre_model = torch.load(args.pre_path)
model_dict = model.state_dict()
pre_dict = {k:v for k, v in pre_model.items() if k in model_dict}
print('pre dict len:',len(pre_dict))
model_dict.update(pre_dict)
model.load_state_dict(model_dict)
else:
for m in model.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
if True:
train_txt_path = args.train_txt_path
global trainset
trainset = MyDataset(train_txt_path, transform=transforms.Compose([
#transforms.Scale((args.res_plus,args.res_plus)),
transforms.Scale(args.res_plus),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(args.res),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
]))
train_len = len(trainset)
print('train_len:',train_len)
train_bs = args.train_bs
global trainloader
trainloader = torch.utils.data.DataLoader(trainset, batch_size=train_bs, shuffle=True)
test_txt_path = args.test_txt_path
global testset
testset = MyDataset(test_txt_path, transform=transforms.Compose([
#transforms.Scale((args.res_plus,args.res_plus)),
transforms.Scale(args.res_plus),
transforms.CenterCrop(args.res),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
]))
test_len = len(testset)
print('test_len:',test_len)
test_bs = args.test_bs
global testloader
testloader = torch.utils.data.DataLoader(testset, batch_size=test_bs, shuffle=False)
lr = args.lr
mode = True #1 : train 0: test
if mode:
for epoch in range(1, args.max_epoches):
if epoch in opt.lr_freq_list:
lr = lr * args.lr_scale
lr = max(lr, 0.0001)
train(epoch, lr)
if epoch % args.test_epoch == 0:
test()
else:
test()
if __name__ == '__main__':
main(sys.argv[1:])