-
Notifications
You must be signed in to change notification settings - Fork 28
/
detect.py
282 lines (238 loc) · 10.8 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import numpy as np
import yaml
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from tqdm import tqdm
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
from scripts import post
def detect(opt, dp, save_img=False):
out, source, weights, view_img, save_txt, imgsz = \
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
device = select_device(opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size 如果不是32的倍数,就向上取整调整至32的倍数并答应warning
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if opt.use_roi:
# print(dp.cl)
# print(dp.cl[0], dp.cl[1])
# cl = opt.control_line
cl = dp.cl
roi_in_pixels = np.array([0, cl[0], 1280, cl[1]]) # two points coor, x1, y1, x2, y2
else:
roi_in_pixels = None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz, roi=roi_in_pixels)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names # 解决GPU保存的模型多了module属性的问题
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] # 随机颜色,对应names,names是class
# fix issue: when single cls, names = ['item'] rather than names = ['crosswalk']
if 'item' in names:
names = ['crosswalk']
# prune
# torch_utils.prune(model, 0.7)
model.eval()
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once 空跑一次,释放!!牛逼
detected_img_id = 0
time_list = [None] * len(dataset)
bar = tqdm(dataset)
for iii, (path, img, im0s, vid_cap, recover) in enumerate(bar):
# print(img.shape, im0s.shape, vid_cap)
# exit()
# img.shape [3, 384, 640] im0s.shape [720, 1280, 3] None
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0) # 从[3, h, w]转换为[batch_size, 3, h, w]的形式
# Inference
t1 = time_synchronized()
# print('aug', opt.augment) # False
pred = model(img, augment=opt.augment)[0]
# print(pred.shape) [1, 15120, 25]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
infer_time = t2 - t1
time_list[iii] = t2-t1
# print('\n', len(pred), pred, recover) # list 长度是bs,代表每张图, 元素tensor,代表检测到的目标,每个tensor.shape [n, 6] xy4, conf, cls
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if opt.use_roi and det is not None:
small_img_shape = torch.from_numpy(np.array([recover[1], recover[0]]).astype(np.float))
det[:, 0], det[:, 2] = det[:, 0] + recover[2], det[:, 2] + recover[2]
det[:, 1], det[:, 3] = det[:, 1] + recover[3], det[:, 3] + recover[3]
else:
small_img_shape = img.shape[2::]
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s # im0s是原图
save_path = str(Path(out) / Path(p).name) # output/filenamexxxx.jpg
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
# output/filenamexxxx.txt
s += '%gx%g ' % img.shape[2:] # print string, 640x640
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
# 本来是[720, 1280, 3],重复取,变成[1280, 720, 1280, 720]
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(small_img_shape, det[:, :4], im0.shape).round() # 转换成原图的x1 y1 x2 y1,像素值
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string # i.e. 1 crosswalk
# s += f'{det[:, 4].item():.4f} '
# print(n)
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
x, y, w, h = xywh
string = f"{int(cls)} {conf.item():.4f} {x:.6f} {y:.6f} {w:.6f} {h:.6f}\n"
f.write(string) # label format
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
# print(type(im0), im0.shape) array, 720, 1280, 3
if names[int(cls)] in opt.plot_classes:
# color = colors[int(cls)]
color = (255, 85, 33)
plot_one_box(xyxy, im0, label=label, color=color, line_thickness=5)
# Print time (inference + NMS)
prt_str = '%sDone. (%.5fs)' % (s, t2 - t1)
# print(prt_str)
os.system(f'echo "{prt_str}" >> {opt.output}/detect.log')
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
im0 = dp.dmpost(im0, det, det_id=detected_img_id, filename=Path(p).name, names=names)
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
# print(detected_img_id, p, txt_path)
tmp_filename = Path(txt_path).stem
im0 = dp.dmpost(im0, det, det_id=detected_img_id, filename=tmp_filename, names=names)
vid_writer.write(im0)
detected_img_id += 1
bar.set_description(f'inf_time: {infer_time*1000:.2f}ms {prt_str:<40}')
if save_txt or save_img:
print('Results saved to %s' % out)
if platform == 'darwin' and not opt.update: # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
time_arr = np.array(time_list)
prnt = f'Done. Network mean inference time: {np.mean(time_arr)*1000:.2f}ms, Mean FPS: {1/np.mean(time_arr):.2f}.'
print(f'\nModel size {opt.img_size} inference {prnt}')
os.system(f'echo "{prnt}" >> {opt.output}/detect.log')
os.system(f'echo "useroi {opt.img_size} {prnt}" >> detect2.log')
def run(opt, dp):
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect(opt, dp)
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, required=False,
default='runs/SEm_NST1_fog1_ep100/weights/best.pt',
help='trained model path model.pt ddpath(s)')
parser.add_argument('--source', type=str, default='example/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='example/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', type=bool, default=True, help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--control-line-setting', type=str, default='settings/cl_setting.yaml',
help='control line setting')
parser.add_argument('--select-control-line', type=str, default='general',
help='select which control line. i.e. general, 0036')
parser.add_argument('--field-size', type=int, default=5, help='receptive field size for post')
parser.add_argument('--plot-classes', type=list, default=['crosswalk'],
help='specifies which classes will be drawn')
parser.add_argument('--not-use-ROI', action='store_true',
help='not use roi for accelerate inference speed if there is the flag')
parser.add_argument('--not-use-SSVM', action='store_true',
help='not use ssvm method for analyse vehicle crossing behavior if there is the flag')
opt = parser.parse_args()
return opt
if __name__ == '__main__':
opt = get_opt()
opt.weights = 'runs/m_ep300/weights/best.pt'
opt.not_use_ROI = True
opt.not_use_SSVM = True
opt.use_roi = not opt.not_use_ROI
opt.use_ssvm = not opt.not_use_SSVM
for_paper = False
if for_paper:
exps = [
'm_ep300', 'SEm_NST0_fog0_ep100', 'SEm_NST1_fog0_ep100',
'SEm_NST1_fog0_ep300', 'SEm_NST1_fog1_ep100']
exp = exps[1]
roi = int(opt.use_roi)
ssvm = int(opt.use_ssvm)
opt.weights = f"runs/{exp}/weights/best.pt"
opt.source = "/home/zzd/datasets/crosswalk/testsets_1770/Images"
opt.output = f"/home/zzd/datasets/crosswalk/testsets_1770/{exp}_sz{opt.img_size}_ROI{roi}_SSVM{ssvm}"
dp = post.DmPost(opt)
print(opt)
runtime = time.time()
run(opt, dp)
print(f'Total runtime: {time.time()-runtime:.5f}')