forked from ImperialCollegeLondon/WInc3D
-
Notifications
You must be signed in to change notification settings - Fork 4
/
acl_utils.f90
288 lines (231 loc) · 8.1 KB
/
acl_utils.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
module actuator_line_model_utils
use decomp_2d, only: mytype
implicit none
! Define parameters for ALM
public QuatRot, cross, IsoKernel, AnIsoKernel, int2str
contains
! Obviously not completed
real(mytype) function trilinear_interpolation(x0,y0,z0, &
x1,y1,z1, &
x,y,z, &
u000,u100,u001,u101, &
u010,u110,u011,u111)
implicit none
real(mytype),intent(in) :: x0,y0,z0,x1,y1,z1,x,y,z,u000,u100,u001,u101,u010,u110,u011,u111
real(mytype) :: c00,c01,c10,c11,c0,c1,xd,yd,zd
if (x1/=x0) then
xd=(x-x0)/(x1-x0)
else
xd=0
endif
if (y1/=y0) then
yd=(y-y0)/(y1-y0)
else
yd=0
endif
if (z1/=z0) then
zd=(z-z0)/(z1-z0)
else
zd=0
endif
! Interpolate along X
c00=u000*(1-xd)+u100*xd
c01=u001*(1-xd)+u101*xd
c10=u010*(1-xd)+u110*xd
c11=u011*(1-xd)+u111*xd
! Interpolate along Y
c0 = c00*(1-yd)+c10*yd
c1 = c01*(1-yd)+c11*yd
! Interpolate along Z
trilinear_interpolation=c0*(1-zd)+c1*zd
return
end function trilinear_interpolation
SUBROUTINE cross(ax,ay,az,bx,by,bz,cx,cy,cz)
real(mytype) ax,ay,az,bx,by,bz,cx,cy,cz
cx = ay*bz - az*by
cy = az*bx - ax*bz
cz = ax*by - ay*bx
End SUBROUTINE cross
subroutine QuatRot(vx,vy,vz,Theta,Rx,Ry,Rz,Ox,Oy,Oz,vRx,vRy,vRz)
! % Perform rotation of vector v around normal vector nR using the
! % quaternion machinery.
! % v: input vector
! % Theta: rotation angle (rad)
! % nR: normal vector around which to rotate
! % Origin: origin point of rotation
! %
! % vR: Rotated vector
implicit none
real(mytype),intent(in) :: vx,vy,vz,Theta,Rx,Ry,Rz,Ox,Oy,Oz
real(mytype),intent(inout):: vRx,vRy,vRz
real(mytype) :: nRx,nRy,nRz
real(mytype) :: p(4,1), pR(4,1), q(4), qbar(4), RMag, vOx, vOy, vOz
real(mytype) :: QL(4,4), QbarR(4,4)
! Force normalize nR
RMag=sqrt(Rx**2.0+Ry**2.0+Rz**2.0)
nRx=Rx/RMag
nRy=Ry/RMag
nRz=Rz/RMag
! Quaternion form of v
vOx=vx-Ox
vOy=vy-Oy
vOz=vz-Oz
p=reshape([0.0d0,vOx,vOy,vOz],[4,1])
! Rotation quaternion and conjugate
q=(/cos(Theta/2),nRx*sin(Theta/2),nRy*sin(Theta/2),nRz*sin(Theta/2)/)
qbar=(/q(1),-q(2),-q(3),-q(4)/)
QL=transpose(reshape((/q(1), -q(2), -q(3), -q(4), &
q(2), q(1), -q(4), q(3), &
q(3), q(4), q(1), -q(2), &
q(4), -q(3), q(2), q(1)/),(/4,4/)))
QbarR=transpose(reshape((/qbar(1), -qbar(2), -qbar(3), -qbar(4), &
qbar(2), qbar(1), qbar(4), -qbar(3), &
qbar(3), -qbar(4), qbar(1), qbar(2), &
qbar(4), qbar(3), -qbar(2), qbar(1)/),(/4,4/)))
! Rotate p
pR=matmul(matmul(QbarR,QL),p)
vRx=pR(2,1)+Ox
vRy=pR(3,1)+Oy
vRz=pR(4,1)+Oz
end subroutine QuatRot
subroutine IDW(Ncol,Xcol,Ycol,Zcol,Fxcol,Fycol,Fzcol,p,Xmesh,Ymesh,Zmesh,Fxmesh,Fymesh,Fzmesh)
implicit none
integer, intent(in) :: Ncol
real(mytype), dimension(Ncol),intent(in) :: Xcol,Ycol,Zcol,Fxcol,Fycol,Fzcol
real(mytype), intent(in) :: Xmesh,Ymesh,Zmesh
integer,intent(in) :: p
real(mytype), intent(inout) :: Fxmesh,Fymesh,Fzmesh
real(mytype),dimension(Ncol) :: d(Ncol), w(Ncol)
real(mytype) :: wsum
integer :: i,imin
wsum=0.0
do i=1,Ncol
d(i)=sqrt((Xcol(i)-Xmesh)**2+(Ycol(i)-Ymesh)**2+(Zcol(i)-Zmesh)**2)
w(i)=1/d(i)**p
wsum=wsum+w(i)
end do
if (minval(d)<0.001) then
imin=minloc(d,1)
Fxmesh=Fxcol(imin)
Fymesh=Fycol(imin)
Fzmesh=Fzcol(imin)
else
Fxmesh=0.0
Fymesh=0.0
Fzmesh=0.0
do i=1,Ncol
Fxmesh=Fxmesh+w(i)*Fxcol(i)/wsum
Fymesh=Fymesh+w(i)*Fycol(i)/wsum
Fzmesh=Fzmesh+w(i)*Fzcol(i)/wsum
enddo
endif
end subroutine IDW
real(mytype) function IsoKernel(dr,epsilon_par,dim)
implicit none
integer, intent(in) :: dim
real(mytype), intent(in) :: dr, epsilon_par
real(mytype), parameter :: pi=3.14159265359
if(dim==2) then
IsoKernel = 1.0/(epsilon_par**2*pi)*exp(-(dr/epsilon_par)**2.0)
elseif(dim==3) then
IsoKernel = 1.0/(epsilon_par**3.0*pi**1.5)*exp(-(dr/epsilon_par)**2.0)
else
write(*,*) "1D source not implemented"
stop
endif
end function IsoKernel
real(mytype) function AnIsoKernel(dx,dy,dz,nx,ny,nz,tx,ty,tz,sx,sy,sz,ec,et,es)
implicit none
real(mytype),intent(in) :: dx,dy,dz,nx,ny,nz,tx,ty,tz,sx,sy,sz,ec,et,es
real(mytype) :: n,t,s
real(mytype), parameter :: pi=3.14159265359
n=dx*nx+dy*ny+dz*nz ! normal projection
t=dx*tx+dy*ty+dz*tz ! Chordwise projection
s=dx*sx+dy*sy+dz*sz ! Spanwise projection
if(abs(s)<=es) then
AnIsoKernel = exp(-((n/et)**2.0+(t/ec)**2.0))/(ec*et*pi)
else
AnIsoKernel = 0.0
endif
end function AnIsoKernel
integer function FindMinimum(x,Start,End)
implicit none
integer, dimension(1:),intent(in) :: x
integer, intent(in) :: Start, End
integer :: Minimum
integer :: Location
integer :: i
minimum = x(start)
Location = Start
do i=start+1,End
if(x(i) < Minimum) then
Minimum = x(i)
Location = i
end if
end do
FindMinimum = Location
end function FindMinimum
subroutine swap(a,b)
implicit none
integer, intent(inout) :: a,b
integer :: Temp
Temp = a
a = b
b = Temp
end subroutine swap
subroutine sort(x,size)
implicit none
integer, dimension(1:), intent(INOUT) :: x
integer, intent(in) :: size
integer :: i
integer :: Location
do i=1,Size-1
location=FindMinimum(x,i,size)
call swap(x(i),x(Location))
end do
end subroutine
function dirname(number)
integer,intent(in) :: number
character(len=6) :: dirname
! Cast the (rounded) number to string using 6 digits and
! leading zeros
write (dirname, '(I6.1)') number
! This is the same w/o leading zeros
!write (dirname, '(I6)') nint(number)
! This is for one digit (no rounding)
!write (dirname, '(F4.1)') number
end function
function outdirname(number)
integer,intent(in) :: number
character(len=6) :: outdirname
! Cast the (rounded) number to string using 6 digits and
! leading zeros
write (outdirname, '(I6.1)') number
! This is the same w/o leading zeros
!write (dirname, '(I6)') nint(number)
! This is for one digit (no rounding)
!write (dirname, '(F4.1)') number
end function
!real function rbf_int(N,r,
! implicit none
! integer,intent(in) :: dim
! real,intent(in) ::dr, epsilon_par!mesh_size,chord
! !real :: epsilon_par !,epsilon_threshold,epsilon_chord
! integer :: j
! if(dim==2) then
! IsoKernel = 1.0/(epsilon_par**2*pi)*exp(-(dr/epsilon_par)**2.0)
! elseif(dim==3) then
! IsoKernel = 1.0/(epsilon_par**3.0*pi**1.5)*exp(-(dr/epsilon_par)**2.0)
! else
! FLAbort("1D source not implemented")
! endif
!
!end function rbf_int
character(20) function int2str(num)
integer, intent(in)::num
character(20) :: str
! convert integer to string using formatted write
write(str, '(i20)') num
int2str = adjustl(str)
end function int2str
end module actuator_line_model_utils