-
Notifications
You must be signed in to change notification settings - Fork 1
/
MNL_Loss.py
181 lines (131 loc) · 5.02 KB
/
MNL_Loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
import torch.nn as nn
from torch.autograd import Function
import torch.nn.functional as F
import numpy as np
import itertools
EPS = 1e-2
esp = 1e-8
class Fidelity_Loss(torch.nn.Module):
def __init__(self):
super(Fidelity_Loss, self).__init__()
def forward(self, p, g):
g = g.view(-1, 1)
p = p.view(-1, 1)
loss = 1 - (torch.sqrt(p * g + esp) + torch.sqrt((1 - p) * (1 - g) + esp))
return torch.mean(loss)
class Fidelity_Loss_distortion(torch.nn.Module):
def __init__(self):
super(Fidelity_Loss_distortion, self).__init__()
def forward(self, p, g):
loss = 0
for i in range(p.size(1)):
p_i = p[:, i]
g_i = g[:, i]
g_i = g_i.view(-1, 1)
p_i = p_i.view(-1, 1)
loss_i = torch.sqrt(p_i * g_i + esp)
loss = loss + loss_i
loss = 1 - loss
#loss = loss / p.size(1)
return torch.mean(loss)
class Multi_Fidelity_Loss(torch.nn.Module):
def __init__(self):
super(Multi_Fidelity_Loss, self).__init__()
def forward(self, p, g):
loss = 0
for i in range(p.size(1)):
p_i = p[:, i]
g_i = g[:, i]
g_i = g_i.view(-1, 1)
p_i = p_i.view(-1, 1)
loss_i = 1 - (torch.sqrt(p_i * g_i + esp) + torch.sqrt((1 - p_i) * (1 - g_i) + esp))
loss = loss + loss_i
loss = loss / p.size(1)
return torch.mean(loss)
eps = 1e-12
def loss_m(y_pred, y):
"""prediction monotonicity related loss"""
assert y_pred.size(0) > 1 #
preds = y_pred-(y_pred + 10).t()
gts = y.t() - y
triu_indices = torch.triu_indices(y_pred.size(0), y_pred.size(0), offset=1)
preds = preds[triu_indices[0], triu_indices[1]]
gts = gts[triu_indices[0], triu_indices[1]]
return torch.sum(F.relu(preds * torch.sign(gts))) / preds.size(0)
#return torch.sum(F.relu((y_pred-(y_pred + 10).t()) * torch.sign((y.t()-y)))) / y_pred.size(0) / (y_pred.size(0)-1)
def loss_m2(y_pred, y, gstd):
"""prediction monotonicity related loss"""
assert y_pred.size(0) > 1 #
preds = y_pred-y_pred.t()
gts = y - y.t()
g_var = gstd * gstd + gstd.t() * gstd.t() + eps
#signed = torch.sign(gts)
triu_indices = torch.triu_indices(y_pred.size(0), y_pred.size(0), offset=1)
preds = preds[triu_indices[0], triu_indices[1]]
gts = gts[triu_indices[0], triu_indices[1]]
g_var = g_var[triu_indices[0], triu_indices[1]]
#signed = signed[triu_indices[0], triu_indices[1]]
constant = torch.sqrt(torch.Tensor([2.])).to(preds.device)
g = 0.5 * (1 + torch.erf(gts / torch.sqrt(g_var)))
p = 0.5 * (1 + torch.erf(preds / constant))
g = g.view(-1, 1)
p = p.view(-1, 1)
loss = torch.mean((1 - (torch.sqrt(p * g + esp) + torch.sqrt((1 - p) * (1 - g) + esp))))
return loss
def loss_mse(y_pred, y):
"""prediction monotonicity related loss"""
# assert y_pred.size(0) > 1 #
loss = torch.mean((y_pred - y) ** 2)
return loss
loss_f = torch.nn.HuberLoss(delta=0.45)
def loss_m3(y_pred, y, epoch = 0):
# """prediction monotonicity related loss"""
# # assert y_pred.size(0) > 1 #
# if epoch > 3:
# # loss = torch.mean((y_pred - y) ** 2)
# y_pred = y_pred.unsqueeze(1)
# y = y.unsqueeze(1)
# preds = y_pred-y_pred.t()
# gts = y - y.t()
# #signed = torch.sign(gts)
# triu_indices = torch.triu_indices(y_pred.size(0), y_pred.size(0), offset=1)
# preds = preds[triu_indices[0], triu_indices[1]]
# gts = gts[triu_indices[0], triu_indices[1]]
# g = 0.5 * (torch.sign(gts) + 1)
# constant = torch.sqrt(torch.Tensor([2.])).to(preds.device)
# p = 0.5 * (1 + torch.erf(preds / constant))
# g = g.view(-1, 1)
# p = p.view(-1, 1)
# loss = torch.mean((1 - (torch.sqrt(p * g + esp) + torch.sqrt((1 - p) * (1 - g) + esp))))
# else:
# loss = torch.mean((y_pred - y) ** 2)
loss = torch.mean(abs(y_pred - y))
return loss
def loss_m4(y_pred_all, per_num, y_all):
"""prediction monotonicity related loss"""
loss = 0
pos_idx = 0
for task_num in per_num:
y_pred = y_pred_all[pos_idx:pos_idx+task_num]
y = y_all[pos_idx:pos_idx+task_num]
pos_idx = pos_idx + task_num
#assert y_pred.size(0) > 1 #
if y_pred.size(0) == 0:
continue
y_pred = y_pred.unsqueeze(1)
y = y.unsqueeze(1)
preds = y_pred - y_pred.t()
gts = y - y.t()
# signed = torch.sign(gts)
triu_indices = torch.triu_indices(y_pred.size(0), y_pred.size(0), offset=1)
preds = preds[triu_indices[0], triu_indices[1]]
gts = gts[triu_indices[0], triu_indices[1]]
g = 0.5 * (torch.sign(gts) + 1)
constant = torch.sqrt(torch.Tensor([2.])).to(preds.device)
p = 0.5 * (1 + torch.erf(preds / constant))
g = g.view(-1, 1)
p = p.view(-1, 1)
loss += torch.mean((1 - (torch.sqrt(p * g + esp) + torch.sqrt((1 - p) * (1 - g) + esp))))
loss = loss / len(per_num)
return loss