Skip to content

Latest commit

 

History

History
132 lines (92 loc) · 2.83 KB

README.md

File metadata and controls

132 lines (92 loc) · 2.83 KB

Two-Stage ASL Detection Architecture: A Hand Sign Languages Detection Scheme

A new two staged approach to Classify Hand sign (American Sign Language)

  • Domain : AI/ML in Support of Human Cognition

  • State : Review phase

Aim

The aim is to develope a method to classify hand sign from image efficiently and building a Realtime sign detector Application. Classical Hand sign detector models train directly from images and I have discovered that it negitively affects the realtime detection accuracy.


These are factors are :-

  • Hand side [Left/Right]
  • Skin color and birthmarks on hand
  • Hand distance from camara
  • Camara quality
  • Hand angel
  • Rapid movement
  • Ambient lighting
  • Background noise, color, movement

We have tried to eliminate this limitation with a different 2 staged approach.

Requirements

  1. Python >3.8
  2. Jupyter Notebook or Lab
  3. git

Setup

  • Clone the Repo
git clone https://github.com/tirtharajsinha/ASL-Classifier.git
cd ASL-Classifier
  • Get the dataset

  • Setup and active the virtual environment (Optional)

  • Setup the virtual environment (Optional/Recommended)

pip install virtualenv
virtualenv venv
./venv/Scripts/activate
  • Install the python dependencies (Inside venv or on root)
pip install -r requirements.txt --user

Download the Dataset

Kaggle Link :- Dataset

Run the general ASL detection algorithm

  • change the dataset path variable PATH with your local path.
  • Run the ASL_dataset generator.ipynb
  • Run the ASL_keypoint_model_trainer.ipynb
  • Run the ASL_keypoint_detector.ipynb
  • Run the Model_tester.ipynb

Run the realtime ASL detection Application

python trackOnCam.py

upstream the local repository with remote repository

git remote add upstream https://github.com/tirtharajsinha/ASL-Classifier.git
git fetch upstream
git checkout main
git merge upstream/main

reset repo

git reset --hard origin/main

Evaluation Reasult

Hardware (Tested)

  • Device : Dell inspiron 3543
  • CPU : intel i3 5005U
  • GPU : Intel HD grapics integrated
  • RAM : Samsung 4GB DD3 SODIMM RAM
  • HDD : Kingstone 480GB SSD

Software (Tested)

  • OS : Windows 10 22H2 / Linux mint 20.3
  • Language : Python3.9
  • Package distributor : Anaconda
  • IDE/interface : Jupyter Notebook

Result

  • CSV dataset Generate time : 292 Seconds
  • Training time : 83.47s
  • Accuracy : 95.25%
  • Detectction time for One image : 62ms
Given hand Image Detected Landmark Detected hand gesture

-- By Tirtharaj Sinha