Replies: 4 comments 5 replies
-
@gabrielasd can you please check if the math is correct. |
Beta Was this translation helpful? Give feedback.
-
@PaulWAyers @gabrielasd I think I made a mistake at one body term |
Beta Was this translation helpful? Give feedback.
-
According to the definitions of Heisenberg model I saw in couple papers (like this one) it's common to define the HHZ Heisenberg model using neighbourhood interactions only. So I propose to give user an option:
@PaulWAyers @gabrielasd what do you think? |
Beta Was this translation helpful? Give feedback.
-
Want to clarify on thing. According to the math above one body term has only diagonal component, however in Ising model we have interactions of the closest site so it should impact the off-diagonal terms. Am I right and we are missing something in the definition or everything is ok? @PaulWAyers @gabrielasd |
Beta Was this translation helpful? Give feedback.
-
Before coding the Heisenberg Hamiltonian it's good to rewrite it in terms of spin-creation/annihilation operators.
We start from the form that is available in notes:
$$\hat{H}{X X Z}=\sum_p\left(\mu_p^Z-J{p p}^{\mathrm{eq}}\right) S_p^Z+\sum_{p q} J_{p q}^{\mathrm{ax}} S_p^Z S_q^Z+\sum_{p q} J_{p q}^{\mathrm{eq}} S_p^{+} S_q^{-}$$
Using the relationships:
$S_p^{+}=a_{p \alpha}^{\dagger} a_{p \beta}^{\dagger}$
$S_p^{-}=a_{p \beta} a_{p \alpha}$
$S_p^Z=\frac{1}{2}\left(a_{p \alpha}^{\dagger} a_{p \alpha}+a_{p \beta}^{\dagger} a_{p \beta}-1\right)$
We can get:
$H_{x x z}=\sum_p\left(\mu_p^z-J_{p p}^{eq}\right) S_p^z+\sum_{p q} J_{p q}^{a x} S_p^z S_q^z+\sum_{p q} J_{p q}^{e q} S_p^{+} S_q^{-} =$
$=\sum_p\left(\mu_p^z-J_{ pp}^{e q}\right)\cdot \frac{1}{2}\left(\hat{n}_p-1\right) +$ $\sum _{pq} J _{p q}^{a x} \cdot \frac{1}{4}\left(\hat{n}_p-1\right) \left(\hat{n}_q-1\right)$ + $\sum _{p q} J _{p q}^{e q} a _{p \alpha}^{+} a _{p \beta}^{+} a _{q \beta} a _{q \alpha}$
$h_0 = -\frac{1}{2} \sum _p\left(\mu _p^z-J _{p p}^{e q}\right)+\frac{1}{4} \sum _{p q} J _{p q}^{a x}$
Then:
Zero body term
One body term
$h_1 = \frac{1}{2} \sum _p\left(\mu _p^z- J _{p p}^{e q}\right) \cdot \hat{n}_p-\frac{1}{4} \sum _{p q} J _{p q}^{a x}\left(\hat{n}_p+n_q\right)$ =
$= \frac{1}{2} \sum _p\left(\mu _p^z-J _{p p}^{e q}\right) \tilde{n}_p-\frac{1}{4} \sum _{p q} J _{p q}^{a x} \hat{n}_p -\frac{1}{4} \sum _{p q} J _{p q}^{a x} \hat{n}_q =$
$=\frac{1}{2} \sum _p\left(\mu_p^z-J _{p p}^{e q}\right) \hat{n}_p-\frac{1}{4} \sum _{p q}\left(J _{p q}^{a x}+J _{q p}^{a x}\right) \hat{n}_p =$
$=\frac{1}{2} \sum _p\left(\mu_p^z-J _{p p}^{e q}\right) \tilde{n}_p-\frac{1}{2} \sum _{pq} J _{p q}^{a x} \hat{n}_p=$
$=\frac{1}{2} \sum _p\left(\mu_p^z-J _{p p}^{e q}-\sum _{q} J _{p q}^{a x}\right) \hat{n}_p$
Two body term
$h_2=\sum _{p q} J _{p q}^{eq} a _{p \alpha}^{+} a _{p \beta}^{+} a _{q \beta} a _{q \alpha}+\frac{1}{4} \sum _{p q} J _{p q} ^{ax} \hat{n}_p \hat{n}_q$
$\hat{n} _p \hat{n} _q=\left(\hat{n} _{p\alpha}+\hat{n} _{p \beta}\right) \left(\hat{n} _{q \alpha}+\hat{n} _{q \beta}\right)=$
$= \hat{n} _{p \alpha} \hat{n} _{q \alpha}+ \hat{n} _{p \alpha} \hat{n} _{q \beta}+\hat{n} _{p \beta} \hat{n} _{q \alpha}+\hat{n} _{p \beta} \hat{n} _{q \beta} =$
$=a _{p \alpha}^{+} a _{p \alpha} a _{q \alpha}^{+} a _{q \alpha} + a _{p\alpha}^{+} a _{p\alpha} a _{q \beta}^{+} a _{q\beta}+ a _{p \beta}^{+} a _{p \beta} a _{q \alpha}^{+} a _{q \alpha}+ a _{p \beta}^{+} a _{p \beta} a _{q \beta}^{+} a _{q \beta}=$
$= a _{p \alpha}^{+} a _{q\alpha}^{+} a _{p \alpha} a _{q\alpha} + a _{p \alpha}^{+} a _{q \beta}^{+} a _{p\alpha} a _{q \beta} + a _{p \beta}^{+} a _{q \alpha}^{+} a _{p \beta} a _{q \alpha}+a _{p \beta}^{+} a _{q \beta}^{+} a _{p \beta} a _{p \beta}$
Considering that
So we can rewrite links between matrices:
$h _{pp} ^{(1)}= \frac{1}{2}\left(\mu_p^z-J _{p p}^{e q}-\sum _{q} J _{p q}^{a x}\right)$ ,
$h _{pq} ^{(1)} = 0$ if $p \neq q$
Also, we can make a mapping to the PPP+ Hamiltonian:
Beta Was this translation helpful? Give feedback.
All reactions