-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix.c
269 lines (233 loc) · 5.76 KB
/
matrix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/* $Id: matrix.c,v 1.8 2003/04/07 16:27:10 ukai Exp $ */
/*
* matrix.h, matrix.c: Liner equation solver using LU decomposition.
*
* by K.Okabe Aug. 1999
*
* LUfactor, LUsolve, Usolve and Lsolve, are based on the functions in
* Meschach Library Version 1.2b.
*/
/**************************************************************************
**
** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
**
** Meschach Library
**
** This Meschach Library is provided "as is" without any express
** or implied warranty of any kind with respect to this software.
** In particular the authors shall not be liable for any direct,
** indirect, special, incidental or consequential damages arising
** in any way from use of the software.
**
** Everyone is granted permission to copy, modify and redistribute this
** Meschach Library, provided:
** 1. All copies contain this copyright notice.
** 2. All modified copies shall carry a notice stating who
** made the last modification and the date of such modification.
** 3. No charge is made for this software or works derived from it.
** This clause shall not be construed as constraining other software
** distributed on the same medium as this software, nor is a
** distribution fee considered a charge.
**
***************************************************************************/
#include "config.h"
#include "matrix.h"
#include "alloc.h"
/*
* Macros from "fm.h".
*/
#define SWAPD(a,b) { double tmp = a; a = b; b = tmp; }
#define SWAPI(a,b) { int tmp = a; a = b; b = tmp; }
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif /* not HAVE_FLOAT_H */
#if defined(DBL_MAX)
static double Tiny = 10.0 / DBL_MAX;
#elif defined(FLT_MAX)
static double Tiny = 10.0 / FLT_MAX;
#else /* not defined(FLT_MAX) */
static double Tiny = 1.0e-30;
#endif /* not defined(FLT_MAX */
/*
* LUfactor -- gaussian elimination with scaled partial pivoting
* -- Note: returns LU matrix which is A.
*/
int
LUfactor(Matrix A, int *indexarray)
{
int dim = A->dim, i, j, k, i_max, k_max;
Vector scale;
double mx, tmp;
scale = new_vector(dim);
for (i = 0; i < dim; i++)
indexarray[i] = i;
for (i = 0; i < dim; i++) {
mx = 0.;
for (j = 0; j < dim; j++) {
tmp = fabs(M_VAL(A, i, j));
if (mx < tmp)
mx = tmp;
}
scale->ve[i] = mx;
}
k_max = dim - 1;
for (k = 0; k < k_max; k++) {
mx = 0.;
i_max = -1;
for (i = k; i < dim; i++) {
if (fabs(scale->ve[i]) >= Tiny * fabs(M_VAL(A, i, k))) {
tmp = fabs(M_VAL(A, i, k)) / scale->ve[i];
if (mx < tmp) {
mx = tmp;
i_max = i;
}
}
}
if (i_max == -1) {
M_VAL(A, k, k) = 0.;
continue;
}
if (i_max != k) {
SWAPI(indexarray[i_max], indexarray[k]);
for (j = 0; j < dim; j++)
SWAPD(M_VAL(A, i_max, j), M_VAL(A, k, j));
}
for (i = k + 1; i < dim; i++) {
tmp = M_VAL(A, i, k) = M_VAL(A, i, k) / M_VAL(A, k, k);
for (j = k + 1; j < dim; j++)
M_VAL(A, i, j) -= tmp * M_VAL(A, k, j);
}
}
return 0;
}
/*
* LUsolve -- given an LU factorisation in A, solve Ax=b.
*/
int
LUsolve(Matrix A, int *indexarray, Vector b, Vector x)
{
int i, dim = A->dim;
for (i = 0; i < dim; i++)
x->ve[i] = b->ve[indexarray[i]];
if (Lsolve(A, x, x, 1.) == -1 || Usolve(A, x, x, 0.) == -1)
return -1;
return 0;
}
/* m_inverse -- returns inverse of A, provided A is not too rank deficient
* -- uses LU factorisation */
#if 0
Matrix
m_inverse(Matrix A, Matrix out)
{
int *indexarray = NewAtom_N(int, A->dim);
Matrix A1 = new_matrix(A->dim);
m_copy(A, A1);
LUfactor(A1, indexarray);
return LUinverse(A1, indexarray, out);
}
#endif /* 0 */
Matrix
LUinverse(Matrix A, int *indexarray, Matrix out)
{
int i, j, dim = A->dim;
Vector tmp, tmp2;
if (!out)
out = new_matrix(dim);
tmp = new_vector(dim);
tmp2 = new_vector(dim);
for (i = 0; i < dim; i++) {
for (j = 0; j < dim; j++)
tmp->ve[j] = 0.;
tmp->ve[i] = 1.;
if (LUsolve(A, indexarray, tmp, tmp2) == -1)
return NULL;
for (j = 0; j < dim; j++)
M_VAL(out, j, i) = tmp2->ve[j];
}
return out;
}
/*
* Usolve -- back substitution with optional over-riding diagonal
* -- can be in-situ but doesn't need to be.
*/
int
Usolve(Matrix mat, Vector b, Vector out, double diag)
{
int i, j, i_lim, dim = mat->dim;
double sum;
for (i = dim - 1; i >= 0; i--) {
if (b->ve[i] != 0.)
break;
else
out->ve[i] = 0.;
}
i_lim = i;
for (; i >= 0; i--) {
sum = b->ve[i];
for (j = i + 1; j <= i_lim; j++)
sum -= M_VAL(mat, i, j) * out->ve[j];
if (diag == 0.) {
if (fabs(M_VAL(mat, i, i)) <= Tiny * fabs(sum))
return -1;
else
out->ve[i] = sum / M_VAL(mat, i, i);
}
else
out->ve[i] = sum / diag;
}
return 0;
}
/*
* Lsolve -- forward elimination with (optional) default diagonal value.
*/
int
Lsolve(Matrix mat, Vector b, Vector out, double diag)
{
int i, j, i_lim, dim = mat->dim;
double sum;
for (i = 0; i < dim; i++) {
if (b->ve[i] != 0.)
break;
else
out->ve[i] = 0.;
}
i_lim = i;
for (; i < dim; i++) {
sum = b->ve[i];
for (j = i_lim; j < i; j++)
sum -= M_VAL(mat, i, j) * out->ve[j];
if (diag == 0.) {
if (fabs(M_VAL(mat, i, i)) <= Tiny * fabs(sum))
return -1;
else
out->ve[i] = sum / M_VAL(mat, i, i);
}
else
out->ve[i] = sum / diag;
}
return 0;
}
/*
* new_matrix -- generate a nxn matrix.
*/
Matrix
new_matrix(int n)
{
Matrix mat;
mat = New(struct matrix);
mat->dim = n;
mat->me = NewAtom_N(double, n * n);
return mat;
}
/*
* new_matrix -- generate a n-dimension vector.
*/
Vector
new_vector(int n)
{
Vector vec;
vec = New(struct vector);
vec->dim = n;
vec->ve = NewAtom_N(double, n);
return vec;
}