forked from scikit-optimize/scikit-optimize
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
52 lines (45 loc) · 1.83 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
try:
from setuptools import setup
except ImportError:
from distutils.core import setup
try:
import builtins
except ImportError:
# Python 2 compat: just to be able to declare that Python >=3.5 is needed.
import __builtin__ as builtins
# This is a bit (!) hackish: we are setting a global variable so that the
# main skopt __init__ can detect if it is being loaded by the setup
# routine
builtins.__SKOPT_SETUP__ = True
import skopt
VERSION = skopt.__version__
CLASSIFIERS = ['Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'License :: OSI Approved :: BSD License',
'Programming Language :: Python',
'Topic :: Software Development',
'Topic :: Scientific/Engineering',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Operating System :: Unix',
'Operating System :: MacOS',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8']
setup(name='scikit-optimize',
version=VERSION,
description='Sequential model-based optimization toolbox.',
long_description=open('README.rst').read(),
url='https://scikit-optimize.github.io/',
license='BSD 3-clause',
author='The scikit-optimize contributors',
classifiers=CLASSIFIERS,
packages=['skopt', 'skopt.learning', 'skopt.optimizer', 'skopt.space',
'skopt.learning.gaussian_process', 'skopt.sampler'],
install_requires=['joblib>=0.11', 'pyaml>=16.9', 'numpy>=1.13.3',
'scipy>=0.19.1',
'scikit-learn>=0.20.0'],
extras_require={
'plots': ["matplotlib>=2.0.0"]
}
)