forked from lazierthanthou/Lecture_Notes_GR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
lecture3.tex
188 lines (150 loc) · 13.2 KB
/
lecture3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
\section{Multilinear Algebra}
\begin{framed}
\textbf{Motivation}: The essential object of study of linear algebra is vector space. However, a word of warning here. We will not equip space(time) with vector space structure. This is evident since, unlike in vector space, expressions such as $5 \cdot \text{Paris}$ and $\text{Paris} + \text{Vienna}$ do not make any sense. If multilinear algebra does not further our aim of studying spacetime, then why do we study it? The tangent spaces $T_pM$ (defined in Lecture 5) at a point $p$ of a smooth manifold $M$ (defined in Lecture 4) carries a vector space structure in a natural way even though the underlying position space(time) does not have a vector space structure. Once we have a notion of tangent space, we have a derived notion of a tensor. Tensors are very important in differential geometry. \\
It is beneficial to study vector spaces (and all that comes with it) abstractly for two reasons: (i) for construction of $T_pM$, one needs an intermediate vector space $C^{\infty}(M)$, and (ii) tensor techniques are most easily understood in an abstract setting.
\end{framed}
\subsection{Vector Spaces}
\begin{definition}
A $\mathbb{R}$-\textbf{vector space} is a triple $(V, +, \cdot)$, where
\begin{enumerate}[i)]
\item $V$ is a set,
\item $+ : V \times V \to V$ \quad (addition), and
\item $. : \mathbb{R} \times V \to V$ \quad (S-multiplication)
\end{enumerate}
satisfying the following:
\begin{enumerate}[a)]
\item $\forall u, v \in V : u + v = v + u$ \quad (commutativity of +)
\item $\forall u, v, w \in V : (u + v) + w = u + (v + w)$ \quad (associativity of +)
\item $\exists O \in V : \forall v \in V : O + v = v$ \quad (neutral element in +)
\item $\forall v \in V : \exists (-v) \in V : v + (-v) = 0$ \quad (inverse of element in +)
\item $\forall \lambda, \mu \in \mathbb{R}, \forall v \in V : \lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$ \quad (associativity in $\cdot$)
\item $\forall \lambda, \mu \in \mathbb{R}, \forall v \in V : (\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$ \quad (distributivity of $\cdot$)
\item $\forall \lambda \in \mathbb{R}, \forall u, v \in V : \lambda \cdot u + \lambda \cdot v = \lambda \cdot (u + v)$ \quad (distributivity of $\cdot$)
\item $\exists 1 \in \mathbb{R} : \forall v \in V : 1 \cdot v = v$ \quad (unit element in $\cdot$)
\end{enumerate}
\end{definition}
\textbf{Terminology}: If $(V,+,\cdot)$ is a vector space, an element of $V$ is often referred to, informally, as a \textbf{vector}. But, we should remember that it makes no sense to call an element of $V$ a vector unless the vector space itself is specified.
\textbf{Example}: Consider a set of polynomials of fixed degree,
\begin{equation*}
P := \left\lbrace p:(-1,+1) \to \mathbb{R} \quad \Big| \quad p(x) = \displaystyle\sum_{n=0}^{N} p_n \cdot x^n, \text{ where } p_n \in \mathbb{R} \right\rbrace
\end{equation*} \\
with $\oplus : P \times P \to P$ with $(p,q) \mapsto p \oplus q : (p \oplus q)(x) = p(x) + q(x)$ and \\
$\odot : \mathbb{R} \times P \to P$ with $(\lambda,p) \mapsto \lambda \odot p : (\lambda \odot p)(x) = \lambda \cdot p(x)$. \textbf{$(P,\oplus,\odot)$} is a vector space.
\textbf{Caution}: \textit{We are considering real vector spaces, that is S-multiplication with the elements of $\mathbb{R}$. We shall often use same symbols `+' and `$\cdot$' for different vector spaces, but the context should make things clear. When $\mathbb{R}, \mathbb{R}^2$, etc. are used as vector spaces, the obvious (natural) operations shall be understood to be used.}
\subsection{Linear Maps}
These are the structure-respecting maps between vector spaces.
\begin{definition}
If $(V,+_v,\cdot_v)$ and $(W,+_w,\cdot_w)$ are vector spaces, then $\phi : V \to W$ is called a \textbf{linear map} if
\begin{enumerate}[i)]
\item $\forall v, \tilde{v} \in V: \phi(v +_v \tilde{v}) = \phi(v) +_w \phi(\tilde{v})$, and
\item $\forall \lambda \in \mathbb{R}, v \in V : \phi(\lambda \cdot_v v) = \lambda \cdot_w \phi(v)$.
\end{enumerate}
\end{definition}
\textbf{Notation}: $\phi : V \to W \text{ is a linear map } \iff \phi : V \linearmapto W$
\textbf{Example}: Consider the vector space $(P,\oplus,\odot)$ from the above example, \\
Then, $\delta : P \to P$ with $p \mapsto \delta (p) := p^\prime$ is a linear map, because \\
$\forall p,q \in P : \delta(p \oplus q) = (p \oplus q)^\prime = p^\prime \oplus q^\prime = \delta(p) \oplus \delta(q)$ and \\
$\forall \lambda \in \mathbb{R}, p \in P : \delta(\lambda \odot p) = (\lambda \odot p)^\prime = \lambda \odot p^\prime$.
\begin{theorem}
If $\phi : U \linearmapto V$ and $\psi : V \linearmapto W$, then $\psi \after \phi : U \linearmapto W$.
\end{theorem}
\[
\begin{tikzpicture}
\matrix (m) [matrix of nodes, row sep=3em, column sep=5em, text height=1.5ex, text depth=0.25ex]
{ $U$ & $V$ & $W$ \\
};
\path[->]
(m-1-1) edge node[above] {$\phi$} (m-1-2)
edge[bend right = 30] node[below] {$\psi \after \phi$} (m-1-3);
\path[->]
(m-1-2) edge node[above] {$\psi$} (m-1-3);
\end{tikzpicture}
\]
\begin{proof}
$ \forall u, \tilde{u} \in U, (\psi \after \phi)(u +_u \tilde{u}) = \psi(\phi(u +_u \tilde{u})) = \psi(\phi(u) +_v \phi(\tilde{u})) = \psi(\phi(u)) +_w \psi(\phi(\tilde{u})) = (\psi \after \phi)(u) +_w (\psi \after \phi)(\tilde{u}) $.
$ \forall \lambda \in \mathbb{R}, u \in U, (\psi \after \phi)(\lambda \cdot_u u) = \psi(\phi(\lambda \cdot_u u)) = \psi(\lambda \cdot_v \phi(u)) = \lambda \cdot_w \psi(\phi(u)) = \lambda \cdot_w (\psi \after \phi)(u) $
\end{proof}
\textbf{Example}: Consider the vector space $(P,\oplus,\odot)$ and the differential $\delta : P \to P$ with $p \mapsto \delta (p) := p^\prime$ from previous example. Then, $p^{\prime\prime}$, the second differential is also linear since it is composition of two linear maps, i.e., $\delta \after \delta : P \linearmapto P$.
\subsection{Vector Space of Homomorphisms}
\begin{definition}
If $(V, +, \cdot)$ and $(W, +, \cdot)$ are vector spaces, then $Hom(V,W) := \left\lbrace \phi : V \linearmapto W \right\rbrace$.
\end{definition}
\begin{theorem}
$(Hom(V,W),+,\cdot)$ is a vector space with \\
$+ : Hom(V,W) \times Hom(V,W) \to Hom(V,W)$ with $(\phi,\psi) \mapsto \phi + \psi : (\phi + \psi)(v) = \phi(v) + \psi(v)$ and \\
$\cdot : \mathbb{R} \times Hom(V,W) \to Hom(V,W)$ with $(\lambda,\phi) \mapsto \lambda \cdot \phi : (\lambda \cdot \phi)(v) = \lambda \cdot \phi(v)$.
\end{theorem}
\textbf{Example}: $(Hom(P,P),+,\cdot)$ is a vector space. $\delta \in Hom(P,P)$, $\delta \after \delta \in Hom(P,P)$, $\delta \after \delta \after \delta \in Hom(P,P)$, etc. Therefore, maps such as $5 \cdot \delta + \delta \after \delta \in Hom(P,P)$. Thus, mixed order derivatives are in $Hom(P,P)$, and hence linear.
\subsection{Dual Vector Spaces}
\begin{definition}
If $(V, +, \cdot)$ is a vector space, and $V^{\ast} := \left\lbrace \phi : V \linearmapto \mathbb{R} \right\rbrace = Hom(V,\mathbb{R})$ then \\
$(V^{\ast},+,\cdot)$ is called the \textbf{dual vector space to V}.
\end{definition}
\textbf{Terminology}: $\omega \in V^{\ast}$ is called, informally, a \textbf{covector}.
\textbf{Example}: Consider $I : P \linearmapto \mathbb{R}$, i.e., $I \in P^\ast$. We define $I(p) := \int_0^1 \! p(x) \, \mathrm{d}x$, which can be easily checked to be linear with $I(p + q) = I(p) + I(q)$ and $I(\lambda \cdot p) = \lambda \cdot I(p)$. Thus $I$ is a covector, which is the integration operator $\int_0^1 \! ( \quad ) \, \mathrm{d}x$ which eats a function.
\textit{Remarks: We shall also see later that the gradient is a covector. In fact, lots of things in physicist's life, which are covectors, have been called vectors not to bother you with details. But covectors are neither esoteric nor unnatural.}
\subsection{Tensors}
We can think of tensors as multilinear maps.
\begin{definition}
Let $(V, +, \cdot)$ be a vector space. An \textbf{(r,s) -tensor} T over V is a multilinear map
\begin{equation*}
T : \underbrace{V^\ast \times V^\ast \times \dots \times V^\ast}_\text{r times} \times \underbrace{V \times V \times \dots \times V}_\text{s times} \linearmapto \mathbb{R}
\end{equation*}
\end{definition}
\textbf{Example}: If T is a (1,1)-tensor, then \\
$T(\omega_1 + \omega_2, v) = T(\omega_1, v) + T(\omega_2, v)$, \\
$T(\omega, v_1 + v_2) = T(\omega, v_1) + T(\omega, v_2)$, \\
$T(\lambda \cdot \omega, v) = \lambda \cdot T(\omega, v)$, and \\
$T(\omega, \lambda \cdot v) = \lambda \cdot T(\omega, v)$. \\
Thus, $T(\omega_1 + \omega_2, v_1 + v_2) = T(\omega_1, v_1) + T(\omega_1, v_2) + T(\omega_2, v_1) + T(\omega_2, v_2)$. \\
\textit{Remarks}: Sometimes it is said that a (1,1)-tensor is something that eats a vector and outputs a vector. Here is why. For $T : V^\ast \times V \linearmapto \mathbb{R}$, define $\phi_T : V \linearmapto (V^\ast)^\ast$ with $v \mapsto T(( \cdot ), v)$. But, clearly $T(( \cdot ), v) : V^\ast \linearmapto \mathbb{R}$, which eats a covector and spits a number. In other words, $T(( \cdot ), v) \in (V^\ast)^\ast$. Although we are yet to define dimension, let us just trust, for the time being, that for finite-dimensional vector spaces, $(V^\ast)^\ast = V$. So, $\phi_T : V \linearmapto V$.
\textbf{Example}: Let $g : P \times P \linearmapto \mathbb{R}$ with $(p,q) \mapsto \int_{-1}^1 \! p(x) \cdot q(x) \, \mathrm{d}x$. Then, $g$ is a (0,2)-tensor over $P$.
\subsection{Vectors and Covectors as Tensors}
\begin{theorem}
If $(V,+,\cdot)$ is a vector space, $\omega \in V^\ast$ is a (0,1)-tensor.
\end{theorem}
\begin{proof}
$\omega \in V^\ast$ and, by definition, $V^{\ast} := \left\lbrace \phi : V \linearmapto \mathbb{R} \right\rbrace$, which is a collection of (0,1)-tensors.
\end{proof}
\begin{theorem}
If $(V,+,\cdot)$ is a vector space, $v \in V$ is a (1,0)-tensor.
\end{theorem}
\begin{proof}
We have already stated, without proof and without defining dimensions, that $V = (V^\ast)^\ast$ for finite-dimensional vector spaces. Therefore, $v \in V \implies v \in (V^\ast)^\ast \implies v \in \left\lbrace \phi : V^\ast \linearmapto \mathbb{R} \right\rbrace \implies$ $v$ is a (1,0)-tensor.
\end{proof}
\subsection{Bases}
\begin{definition}
Let $(V,+,\cdot)$ is a vector space. A subset $B \subseteq V$ is called a \textbf{basis} if \\
$\forall v \in V, \exists ! e_1,e_2,\dotsc,e_n \in B, \exists ! v_1,v_2,\dotsc,v_n \in \mathbb{R} : v = \displaystyle\sum_{i=1}^n v_i \cdot e_i$.
\end{definition}
\begin{definition}
A vector space $(V,+,\cdot)$ with a basis $B$ is said to be \textbf{$d$-dimensional} if $B$ has $d$ elements. In other words, $dim V := d$.
\end{definition}
\textit{Remarks: The above definition is well-defined only if every basis of a vector space has the same number of elements.}
\textbf{Remarks}: Let $(V,+,\cdot)$ is a vector space. Having chosen a basis $e_1,e_2,\dotsc,e_n$, we may uniquely associate $v \mapsto (v_1,v_2,dotsc,v_n)$, these numbers being the components of $v$ w.r.t. chosen basis where $v = \displaystyle\sum_{i=1}^n v_i \cdot e_i$.
\subsection{Basis for the Dual Space}
Let $(V,+,\cdot)$ is a vector space. Having chosen a basis $e_1,e_2,\dotsc,e_n$ for $V$, we can choose a basis $\epsilon^1,\epsilon^2,\dotsc,\epsilon^n$ for $V^\ast$ entirely independent of basis of $V$. However, it is more economical to require that
\begin{equation*}
\epsilon^a (e_b) = \delta_b^a = \begin{cases}
1 &\quad \text{if } a = b \\
0 &\quad \text{if } a \neq b \\
\end{cases}
\end{equation*} This uniquely determines $\epsilon^1,\epsilon^2,\dotsc,\epsilon^n$ from choice of $e_1,e_2,\dotsc,e_n$.
\textit{Remarks: The reason for using indices as superscripts or subscripts is to be able to use the Einstein summation convention, which will be helpful in dropping cumbersome $\sum$ symbols in several equations.}
\begin{definition}
For a basis $e_1,e_2,\dotsc,e_n$ of vector space $(V,+,\cdot)$, $\epsilon^1,\epsilon^2,\dotsc,\epsilon^n$ is called the \textbf{dual basis} of the dual space, if $\epsilon^a (e_b) = \delta_b^a$.
\end{definition}
\textbf{Example}: Consider polynomials $P$ of degree 3. Choose $e_0,e_1,e_2,e_3 \in P$ such that $e_0(x) = 1, e_1(x) = x, e_2(x) = x^2 and e_3(x) = x^3$. Then, it can be easily verified that the dual basis is $\epsilon^a = \displaystyle\frac{1}{a!}\partial^a\Big|_{x=0}$.
\subsection{Components of Tensors}
\label{ss:L3_TensorComponents}
\begin{definition}
Let $T$ be a $(r,s)$-tensor over a $d$-dimensional (finite) vector space $(V,+,\cdot)$. Then, with respect to some basis $\lbrace e_1, \dotsc, e_r \rbrace$ and the dual basis $\lbrace \epsilon^1, \dotsc, \epsilon^s \rbrace$, define $(r+s)^d$ real numbers
\begin{equation*}
T\indices{^{i_1 \dots i_r}_{j_1 \dots j_s}} := T(\epsilon^{i_1}, \dotsc, \epsilon^{i_r}, e_{j_1}, \dotsc, e_{j_s})
\end{equation*} such that the indices $i_1, \dotsc, i_r, j_1, \dotsc, j_s$ take all possible values in the set $\lbrace 1,\dotsc,d \rbrace$. These numbers $T\indices{^{i_1 \dots i_r}_{j_1 \dots j_s}}$ are called the \textbf{components of the tensor} $T$ w.r.t. the chosen basis.
\end{definition}
This is useful because knowing components (and the basis w.r.t which these components have been chosen), one can reconstruct the entire tensor.
\textbf{Example}: If $T$ is a $(1,1)$-tensor, then $T\indices{^{i}_{j}} := T(\epsilon^i,e_j)$. Then\\
\begin{equation*}
T(\omega,v) = T\left(\sum_{i=1}^d \omega_i \cdot \epsilon^i,\sum_{j=1}^d v^j \cdot e_j \right) = \sum_{i=1}^d \sum_{j=1}^d \omega_i v^j T(\epsilon^i,e_j) = \sum_{i=1}^d \sum_{j=1}^d \omega_i v^j T\indices{^{i}_{j}} =: \omega_i v^j T\indices{^{i}_{j}}
\end{equation*}