-
Notifications
You must be signed in to change notification settings - Fork 5
/
util.py
184 lines (146 loc) · 6.03 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import random
import networkx as nx
import numpy as np
import torch
class SubGraph(object):
def __init__(self, sample_list = [], unsample_list = []):
self.sample_list = sample_list
self.unsample_list = unsample_list
class S2VGraph(object):
def __init__(self, g, label, node_tags=None, node_features=None):
'''
g: a networkx graph
label: an integer graph label
node_tags: a list of integer node tags
node_features: a torch float tensor, one-hot representation of the tag that is used as input to neural nets
edge_mat: a torch long tensor, contain edge list, will be used to create torch sparse tensor
neighbors: list of neighbors (without self-loop)
'''
self.label = label
self.g = g
self.node_tags = node_tags
self.neighbors = []
self.node_features = 0
self.edge_mat = 0
self.max_neighbor = 0
self.nodegroup = 0
self.K = 0
self.sample_list = []
self.unsample_list = []
def load_data(dataset, degree_as_tag):
'''
dataset: name of dataset
test_proportion: ratio of test train split
seed: random seed for random splitting of dataset
'''
print('loading data')
g_list = []
label_dict = {}
feat_dict = {}
with open('dataset/%s/%s.txt' % (dataset, dataset), 'r') as f:
n_g = int(f.readline().strip())
for i in range(n_g):
row = f.readline().strip().split()
n, l = [int(w) for w in row]
if not l in label_dict:
mapped = len(label_dict)
label_dict[l] = mapped
g = nx.Graph()
node_tags = []
node_features = []
n_edges = 0
for j in range(n):
g.add_node(j)
row = f.readline().strip().split()
tmp = int(row[1]) + 2
if tmp == len(row):
# no node attributes
row = [int(w) for w in row]
attr = None
else:
row, attr = [int(w) for w in row[:tmp]], np.array([float(w) for w in row[tmp:]])
if not row[0] in feat_dict:
mapped = len(feat_dict)
feat_dict[row[0]] = mapped
node_tags.append(feat_dict[row[0]])
if tmp > len(row):
node_features.append(attr)
n_edges += row[1]
for k in range(2, len(row)):
g.add_edge(j, row[k])
if node_features != []:
node_features = np.stack(node_features)
node_feature_flag = True
else:
node_features = None
node_feature_flag = False
assert len(g) == n
g_list.append(S2VGraph(g, l, node_tags))
#add labels and edge_mat
for g in g_list:
g.neighbors = [[] for i in range(len(g.g))]
for i, j in g.g.edges():
g.neighbors[i].append(j)
g.neighbors[j].append(i)
degree_list = []
for i in range(len(g.g)):
g.neighbors[i] = g.neighbors[i]
degree_list.append(len(g.neighbors[i]))
g.max_neighbor = max(degree_list)
g.label = label_dict[g.label]
edges = [list(pair) for pair in g.g.edges()]
edges.extend([[i, j] for j, i in edges])
deg_list = list(dict(g.g.degree(range(len(g.g)))).values())
g.edge_mat = torch.LongTensor(edges).transpose(0,1)
if degree_as_tag:
for g in g_list:
g.node_tags = list(dict(g.g.degree).values())
#Extracting unique tag labels
tagset = set([])
for g in g_list:
tagset = tagset.union(set(g.node_tags))
tagset = list(tagset)
tag2index = {tagset[i]:i for i in range(len(tagset))}
for g in g_list:
g.node_features = torch.zeros(len(g.node_tags), len(tagset))
g.node_features[range(len(g.node_tags)), [tag2index[tag] for tag in g.node_tags]] = 1
print('# classes: %d' % len(label_dict))
print('# maximum node tag: %d' % len(tagset))
print("# data: %d" % len(g_list))
return g_list, len(label_dict)
def data_split(graph_list, sample_list, valid_ratio = 0.1, test_ratio = 0.2, seed = 2022):
random.seed(seed)
shuffled_indices = list(range(len(graph_list)))
random.shuffle(shuffled_indices)
test_set_size = int(len(graph_list)*test_ratio)
train_set_size = int(len(graph_list)*(1-test_ratio-valid_ratio))
test_indices = shuffled_indices[-test_set_size:]
valid_indices = shuffled_indices[train_set_size:-test_set_size]
train_indices = shuffled_indices[:train_set_size]
train_graph_list = [graph_list[i] for i in train_indices]
train_sample_list = [sample_list[i] for i in train_indices]
test_graph_list = [graph_list[i] for i in test_indices]
valid_graph_list = [graph_list[i] for i in valid_indices]
return train_graph_list, valid_graph_list, test_graph_list, train_sample_list
def load_sample(dataset):
gsample_list = []
print("Samples loading...")
rows = 500
with open('dataset/%s/sampling.txt' % (dataset), 'r') as f:
n_g = int(f.readline().strip())
for i in range(n_g):
K = int(f.readline().strip())
if K == 0:
gsample_list.append(SubGraph())
continue
sample_list = []
unsample_list = []
for j in range(rows):
row = f.readline().strip().split()
k = int(row.pop())
row = [int(n) for n in row]
sample_list.append(row[:k])
unsample_list.append(row[k:])
gsample_list.append(SubGraph(sample_list, unsample_list))
print("loading finished!")
return gsample_list