forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wide_deep_test.py
150 lines (118 loc) · 5.16 KB
/
wide_deep_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.utils.testing import integration
from official.wide_deep import wide_deep
tf.logging.set_verbosity(tf.logging.ERROR)
TEST_INPUT = ('18,Self-emp-not-inc,987,Bachelors,12,Married-civ-spouse,abc,'
'Husband,zyx,wvu,34,56,78,tsr,<=50K')
TEST_INPUT_VALUES = {
'age': 18,
'education_num': 12,
'capital_gain': 34,
'capital_loss': 56,
'hours_per_week': 78,
'education': 'Bachelors',
'marital_status': 'Married-civ-spouse',
'relationship': 'Husband',
'workclass': 'Self-emp-not-inc',
'occupation': 'abc',
}
TEST_CSV = os.path.join(os.path.dirname(__file__), 'wide_deep_test.csv')
class BaseTest(tf.test.TestCase):
"""Tests for Wide Deep model."""
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(BaseTest, cls).setUpClass()
wide_deep.define_wide_deep_flags()
def setUp(self):
# Create temporary CSV file
self.temp_dir = self.get_temp_dir()
self.input_csv = os.path.join(self.temp_dir, 'test.csv')
with tf.gfile.Open(self.input_csv, 'w') as temp_csv:
temp_csv.write(TEST_INPUT)
with tf.gfile.Open(TEST_CSV, "r") as temp_csv:
test_csv_contents = temp_csv.read()
# Used for end-to-end tests.
for fname in ['adult.data', 'adult.test']:
with tf.gfile.Open(os.path.join(self.temp_dir, fname), 'w') as test_csv:
test_csv.write(test_csv_contents)
def test_input_fn(self):
dataset = wide_deep.input_fn(self.input_csv, 1, False, 1)
features, labels = dataset.make_one_shot_iterator().get_next()
with tf.Session() as sess:
features, labels = sess.run((features, labels))
# Compare the two features dictionaries.
for key in TEST_INPUT_VALUES:
self.assertTrue(key in features)
self.assertEqual(len(features[key]), 1)
feature_value = features[key][0]
# Convert from bytes to string for Python 3.
if isinstance(feature_value, bytes):
feature_value = feature_value.decode()
self.assertEqual(TEST_INPUT_VALUES[key], feature_value)
self.assertFalse(labels)
def build_and_test_estimator(self, model_type):
"""Ensure that model trains and minimizes loss."""
model = wide_deep.build_estimator(self.temp_dir, model_type)
# Train for 1 step to initialize model and evaluate initial loss
def get_input_fn(num_epochs, shuffle, batch_size):
def input_fn():
return wide_deep.input_fn(
TEST_CSV, num_epochs=num_epochs, shuffle=shuffle,
batch_size=batch_size)
return input_fn
model.train(input_fn=get_input_fn(1, True, 1), steps=1)
initial_results = model.evaluate(input_fn=get_input_fn(1, False, 1))
# Train for 100 epochs at batch size 3 and evaluate final loss
model.train(input_fn=get_input_fn(100, True, 3))
final_results = model.evaluate(input_fn=get_input_fn(1, False, 1))
print('%s initial results:' % model_type, initial_results)
print('%s final results:' % model_type, final_results)
# Ensure loss has decreased, while accuracy and both AUCs have increased.
self.assertLess(final_results['loss'], initial_results['loss'])
self.assertGreater(final_results['auc'], initial_results['auc'])
self.assertGreater(final_results['auc_precision_recall'],
initial_results['auc_precision_recall'])
self.assertGreater(final_results['accuracy'], initial_results['accuracy'])
def test_wide_deep_estimator_training(self):
self.build_and_test_estimator('wide_deep')
def test_end_to_end_wide(self):
integration.run_synthetic(
main=wide_deep.main, tmp_root=self.get_temp_dir(), extra_flags=[
'--data_dir', self.get_temp_dir(),
'--model_type', 'wide',
],
synth=False, max_train=None)
def test_end_to_end_deep(self):
integration.run_synthetic(
main=wide_deep.main, tmp_root=self.get_temp_dir(), extra_flags=[
'--data_dir', self.get_temp_dir(),
'--model_type', 'deep',
],
synth=False, max_train=None)
def test_end_to_end_wide_deep(self):
integration.run_synthetic(
main=wide_deep.main, tmp_root=self.get_temp_dir(), extra_flags=[
'--data_dir', self.get_temp_dir(),
'--model_type', 'wide_deep',
],
synth=False, max_train=None)
if __name__ == '__main__':
tf.test.main()