forked from edrosten/threeB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
multispot5.cfg
124 lines (84 loc) · 2.78 KB
/
multispot5.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
//Never set this to anything other than [1 1]
log_ratios_zoom=[1 1]
//Zoom level to use of debugging graphics are enabled
debug.zoom=4
//Transition matrix and initial probabilities
A=[0.16 0.84 0; 0.495 0.495 0.01; 0 0 1]
pi=[.5 .5 0]
//General parameters
gibbs.mixing_iterations=1
cg.max_motion=0.5
//Specific subsystem parameters
//Main optimization
main.optimization_version=2
main.cg.max_iterations=5
main.gibbs.samples=10
main.passes=4
//Stop the optimization if this many consecutive iterations
//have empty models (no spots). For 0 or less, it never stops
//on this criterion. 1 will stop at the first empty iteration.
main.consecutive_empty_models=0
///This is the minimum size for empty models
///At N or fewer spots, the model is considered to be empty.
main.empty_model.max_size=3
//Add - Remove
add_remove.optimizer.samples=20
add_remove.optimizer.attempts=10
add_remove.optimizer.hessian_inner_samples=1000
add_remove.thermo.samples=1000
add_remove.hessian.outer_samples=100
add_remove.hessian.inner_samples=1000
add_remove.tries=10
//Skip the preprocessing step (or now)
preprocess.skip=0
preprocess.fixed_scaling=0
//Low pass filter has this sigma
preprocess.lpf=5
//Threshold the log_ratios image at this leve;
threshold=0
//Dilate log_ratios imge by this radius after thresholding
radius=0
//Use marked region 19
cluster_to_show=19
//Actually, ignore that, simply use the largest marked region
use_largest=1
//Allow spots to be at most this far outside the marked region
position.extra_radius=2.3
//Use a uniform position prior (to make spot probability a proper distribution)
position.use_prior=1
//Scale the maximum step in brightness according to the prior shape
max_motion.use_brightness_std=1
//Options are:
// uniform (place spots uniformly over the area of interest)
// intensity_sampled (place spots more densely in brighter regions)
placement=intensity_sampled
////////////////////////////////////////////////////////////////////////////////
//
// Things you might want to change are below here
//
////////////////////////////////////////////
//
// Spot shape priors. Make sure you SET THIS correctly.
//
// calculating a value for blur.mu:
// 1. temp_sigma = (fwhm_in_nm / pixel_size_in_nm) / (2 * sqrt(2 * ln(2)))
// 2. blur_sigma = 0.1
// 3. blur.mu = ln(temp_sigma) + (blur_sigma * blur_sigma)
//
//Corresponds to 300nm at 100nm per pixel
blur.mu=0.252148
blur.sigma=0.1
//Corresponds to 300nm at 160nm per pixel
blur.mu=-0.217856
blur.sigma=0.1
//Corresponds to 270nm at 79nm per pixel
//blur.mu=0.38251
//blur.sigma=0.1
////////////////////////////////////////////
//
// Spot intensity priors. You can probably leave this as-is
//
intensity.rel_mu=2
intensity.rel_sigma=1
//Number of spots (for uniform and intensity_sampled). SET THIS
placement.uniform.num_spots=15