-
Notifications
You must be signed in to change notification settings - Fork 0
/
vqvae.py
190 lines (159 loc) · 6.02 KB
/
vqvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
VQ-VAE with PyTorch.
Everything in one file.
"""
##################################################################################################################################
import torch
import torch.nn as nn
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.shape[0], -1)
class Reshape(nn.Module):
def __init__(self, out_shape):
super(Reshape, self).__init__()
self.out_shape = out_shape
def forward(self, x):
return x.view(*self.out_shape)
class Encoder(nn.Module):
def __init__(self, latent):
super(Encoder, self).__init__()
self.encode = nn.Sequential(
Flatten(),
nn.Linear(in_features=28*28, out_features=512),
nn.ReLU(),
nn.Linear(in_features=512, out_features=256),
nn.ReLU(),
nn.Linear(in_features=256, out_features=128),
nn.ReLU(),
nn.Linear(128, latent)
)
def forward(self, x):
return self.encode(x)
class Decoder(nn.Module):
def __init__(self, latent):
super(Decoder, self).__init__()
self.decode = nn.Sequential(
nn.Linear(in_features=latent, out_features=128),
nn.ReLU(),
nn.Linear(in_features=128, out_features=256),
nn.ReLU(),
nn.Linear(in_features=256, out_features=512),
nn.ReLU(),
nn.Linear(in_features=512, out_features=28*28),
nn.Sigmoid(),
Reshape((-1, 1, 28, 28))
)
def forward(self, x):
return self.decode(x)
# Vector Quantization Layer
class VectorQuantization(nn.Module):
def __init__(self, embedding_dim, num_embeddings):
super(VectorQuantization, self).__init__()
self.embedding_dim = embedding_dim
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
self.embedding.weight.data.uniform_(-1 / num_embeddings, 1 / num_embeddings)
def forward(self, x):
# x: [N, embedding_dim]
# Find nearest embedding, (a-b)**2=a**2+b**2-2ab
distances = torch.sum(x**2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight.data**2, dim=1) - \
2 * torch.matmul(x, self.embedding.weight.t())
indices = torch.argmin(distances, dim=1).unsqueeze(1) # [N, 1]
# Quantize
x_quantized = self.embedding(indices).view(x.size())
# VQ Loss
# Compute the VQ Losses
commitment_loss = nn.functional.mse_loss(x_quantized.detach(), x)
embedding_loss = nn.functional.mse_loss(x_quantized, x.detach())
vq_loss = commitment_loss * 0.25 + embedding_loss
x_quantized = x + (x_quantized - x).detach()
return x_quantized, vq_loss
class VAE(nn.Module):
def __init__(self, latent, num_embeddings):
super(VAE, self).__init__()
self.latent = latent
self.encoder = Encoder(latent)
self.decoder = Decoder(latent)
self.vq = VectorQuantization(latent, num_embeddings)
def forward(self, x):
z = self.encoder(x)
z_q, vq_loss = self.vq(z)
return self.decoder(z_q), vq_loss
def generate(self, num_sample):
model_device = next(self.parameters()).device
idxes = torch.tensor(list(range(num_sample))).to(model_device)
z_q = self.vq.embedding(idxes)
return self.decoder(z_q)
##################################################################################################################################
import torchvision
import tqdm
def get_dataloader():
tf = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
dataset = torchvision.datasets.MNIST(
"./data",
train=True,
download=True,
transform=tf,
)
return torch.utils.data.DataLoader(dataset, batch_size=128, shuffle=True, num_workers=8)
def get_device():
device = 'cpu'
if torch.backends.mps.is_available():
device = 'mps:0'
if torch.cuda.is_available():
device = 'cuda'
return device
def train(net, dataloader, device):
optimizer = torch.optim.AdamW(net.parameters())
net.train()
with tqdm.tqdm(dataloader, ncols=64) as pbar:
for x, _ in pbar:
x = x.to(device)
x_actual, vq_loss = net(x)
loss = nn.functional.mse_loss(x_actual, x, reduction='mean') + vq_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
pbar.set_description(f"Loss {loss.cpu().item():.4f}")
##################################################################################################################################
from matplotlib import pyplot as plt
def predict(net):
net.eval() # disable drop-out and batch-normalization
with torch.no_grad():
x = net.generate(32)
images = x.cpu()
fig, axes = plt.subplots(4, 8, figsize=(4, 4))
for i, ax in enumerate(axes.flat):
ax.imshow(images[i].squeeze(0).numpy(), cmap='gray')
ax.axis("off")
plt.tight_layout()
plt.show()
##################################################################################################################################
from absl import flags
from absl import app
def main(unused_args):
"""
Samples:
python vae.py --train --predict
"""
device = get_device()
if FLAGS.train:
print('Train')
dataloader = get_dataloader()
net = VAE(latent=2, num_embeddings=32).to(device)
for i in range(FLAGS.epochs):
train(net, dataloader, device)
torch.save(net.state_dict(), 'vqvae.pth')
if FLAGS.predict:
print('Predict')
net = VAE(latent=2, num_embeddings=32).to(device)
net.load_state_dict(torch.load('vqvae.pth'))
predict(net)
if __name__ == '__main__':
FLAGS = flags.FLAGS
flags.DEFINE_bool("train", False, "Train the model")
flags.DEFINE_bool("predict", False, "Predict")
flags.DEFINE_integer("epochs", 3, "Epochs to train")
app.run(main)