forked from cunnia3/Dynamic-Motion-Primitives
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dmp.py
executable file
·170 lines (141 loc) · 5.74 KB
/
dmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
class DMP(object):
def __init__(self, pastor_mod=False):
self.pastor_mod = pastor_mod
# Transformation system
self.alpha = 25.0 # = D = 20.0
self.beta = self.alpha / 4.0 # = K / D = 100.0 / 20.0 = 5.0
# Canonical system
self.alpha_t = self.alpha / 3.0
# Obstacle avoidance
self.gamma_o = 1000.0
self.beta_o = 20.0 / np.pi
def phase(self, n_steps, t=None):
"""The phase variable replaces explicit timing.
It starts with 1 at the beginning of the movement and converges
exponentially to 0.
"""
phases = np.exp(-self.alpha_t * np.linspace(0, 1, n_steps))
if t is None:
return phases
else:
return phases[t]
def spring_damper(self, x0, g, tau, s, X, Xd):
"""The transformation system generates a goal-directed movement."""
if self.pastor_mod:
# Allows smooth adaption to goals, in the original version also the
# forcing term is multiplied by a constant alpha * beta which you
# can of course omit since the weights will simply be scaled
mod = -self.beta * (g - x0) * s
else:
mod = 0.0
return self.alpha * (self.beta * (g - X) - tau * Xd + mod) / tau ** 2
def forcing_term(self, x0, g, tau, w, s, X, scale=False):
"""The forcing term shapes the movement based on the weights."""
n_features = w.shape[1]
f = np.dot(w, self._features(tau, n_features, s))
if scale:
f *= g - x0
if X.ndim == 3:
F = np.empty_like(X)
F[:, :] = f
return F
else:
return f
def _features(self, tau, n_features, s):
if n_features == 0:
return np.array([])
elif n_features == 1:
return np.array([1.0])
c = self.phase(n_features)
h = np.diff(c)
h = np.hstack((h, [h[-1]]))
phi = np.exp(-h * (s - c) ** 2)
return s * phi / phi.sum()
def obstacle(self, o, X, Xd):
"""Obstacle avoidance is based on point obstacles."""
if X.ndim == 1:
X = X[np.newaxis, np.newaxis, :]
if Xd.ndim == 1:
Xd = Xd[np.newaxis, np.newaxis, :]
C = np.zeros_like(X)
R = np.array([[np.cos(np.pi / 2.0), -np.sin(np.pi / 2.0)],
[np.sin(np.pi / 2.0), np.cos(np.pi / 2.0)]])
for i in range(X.shape[0]):
for j in range(X.shape[1]):
obstacle_diff = o - X[i, j]
theta = (np.arccos(obstacle_diff.dot(Xd[i, j]) /
(np.linalg.norm(obstacle_diff) *
np.linalg.norm(Xd[i, j]) + 1e-10)))
C[i, j] = (self.gamma_o * R.dot(Xd[i, j]) * theta *
np.exp(-self.beta_o * theta))
return np.squeeze(C)
def imitate(self, X, tau, n_features):
n_steps, n_dims = X.shape
dt = tau / float(n_steps - 1)
g = X[:, -1]
Xd = np.vstack((np.zeros((1, n_dims)), np.diff(X, axis=0) / dt))
Xdd = np.vstack((np.zeros((1, n_dims)), np.diff(Xd, axis=0) / dt))
F = tau * tau * Xdd - self.alpha * (self.beta * (g[:, np.newaxis] - X)
- tau * Xd)
design = np.array([self._features(tau, n_features, s)
for s in self.phase(n_steps)])
#w = np.linalg.lstsq(design, F)[0].T
from sklearn.linear_model import Ridge
lr = Ridge(alpha=1.0, fit_intercept=False)
lr.fit(design, F)
w = lr.coef_
return w
def trajectory(dmp, w, x0, g, tau, dt, o=None, shape=True, avoidance=False,
verbose=0):
"""Generate trajectory from DMP in open loop."""
if verbose >= 1:
print("Trajectory with x0 = %s, g = %s, tau=%.2f, dt=%.3f"
% (x0, g, tau, dt))
x = x0.copy()
xd = np.zeros_like(x, dtype=np.float64)
xdd = np.zeros_like(x, dtype=np.float64)
X = [x0.copy()]
Xd = [xd.copy()]
Xdd = [xdd.copy()]
# Internally, we do Euler integration usually with a much smaller step size
# than the step size required by the system
internal_dt = min(0.001, dt)
n_internal_steps = int(tau / internal_dt)
steps_between_measurement = int(dt / internal_dt)
# Usually we would initialize t with 0, but that results in floating point
# errors for very small step sizes. To ensure that the condition t < tau
# really works as expected, we add a constant that is smaller than
# internal_dt.
t = 0.5 * internal_dt
ti = 0
S = dmp.phase(n_internal_steps + 1)
while t < tau:
t += internal_dt
ti += 1
s = S[ti]
x += internal_dt * xd
xd += internal_dt * xdd
sd = dmp.spring_damper(x0, g, tau, s, x, xd)
f = dmp.forcing_term(x0, g, tau, w, s, x) if shape else 0.0
C = dmp.obstacle(o, x, xd) if avoidance else 0.0
xdd = sd + f + C
if ti % steps_between_measurement == 0:
X.append(x.copy())
Xd.append(xd.copy())
Xdd.append(xdd.copy())
return np.array(X), np.array(Xd), np.array(Xdd)
def potential_field(dmp, t, v, w, x0, g, tau, dt, o, x_range, y_range,
n_tics):
xx, yy = np.meshgrid(np.linspace(x_range[0], x_range[1], n_tics),
np.linspace(y_range[0], y_range[1], n_tics))
x = np.array((xx, yy)).transpose((1, 2, 0))
xd = np.empty_like(x)
xd[:, :] = v
n_steps = int(tau / dt)
s = dmp.phase(n_steps, t)
sd = dmp.spring_damper(x0, g, tau, s, x, xd)
f = dmp.forcing_term(x0, g, tau, w, s, x)
C = dmp.obstacle(o, x, xd)
acc = sd + f + C
return xx, yy, sd, f, C, acc