-
Notifications
You must be signed in to change notification settings - Fork 1
/
lc3.c
514 lines (480 loc) · 13.5 KB
/
lc3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/* lc3.c */
/* Includes */
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <signal.h>
#if defined(_WIN32)
/* windows only */
#include <Windows.h>
#include <conio.h> // _kbhit
#elif __unix__
#include <unistd.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/termios.h>
#include <sys/mman.h>
#endif
// memory mapped registers
// 内存映射寄存器
/*
* Some special registers are not accessible from the normal register table.
Instead, a special address is reserved for them in memory.
To read and write to these registers, you just read and write to their memory location.
These are called memory mapped registers.
They are commonly used to interact with special hardware devices.
*/
/*
一般电脑中有以下寄存器
AC (Accumulator)
AR (Address Register)
DR (Data Register)
IR (Index Registers)
PC (Program Counter)
MDR ( Memory Data Register)
MBR ( Memory Buffer Register) and more.
*/
enum registers
{
R_R0 = 0,
R_R1,
R_R2,
R_R3,
R_R4,
R_R5,
R_R6,
R_R7,
R_PC, /* program counter */
R_COND,
R_COUNT
};
// like reg array
uint16_t reg[R_COUNT];
// memory array
uint16_t memory[UINT16_MAX];
enum condition_flags
{
FL_POS = 1 << 0, /* P */
FL_ZRO = 1 << 1, /* Z */
FL_NEG = 1 << 2, /* N */
};
/*
An instruction is a command which tells the CPU to do some fundamental task,
such as add two numbers.
Instructions have both an opcode which indicates the kind of task to perform
and a set of parameters which provide inputs to the task being performed.
Each opcode represents one task that the CPU “knows” how to do. There are just 16 opcodes in LC-3.
*/
enum opcodes
{
OP_BR = 0, /* branch */
OP_ADD, /* add */
OP_LD, /* load */
OP_ST, /* store */
OP_JSR, /* jump register */
OP_AND, /* bitwise and */
OP_LDR, /* load register */
OP_STR, /* store register */
OP_RTI, /* unused */
OP_NOT, /* bitwise not */
OP_LDI, /* load indirect */
OP_STI, /* store indirect */
OP_JMP, /* jump */
OP_RES, /* reserved (unused) */
OP_LEA, /* load effective address */
OP_TRAP /* execute trap */
};
enum memory_mapped_registers
{
MR_KBSR = 0xFE00, /* keyboard status */
MR_KBDR = 0xFE02 /* keyboard data */
};
/*
The LC-3 provides a few predefined routines for performing common tasks and interacting with I/O devices.
For example, there are routines for getting input from the keyboard and for displaying strings to the console.
These are called trap routines which you can think of as the operating system or API for the LC-3.
Each trap routine is assigned a trap code which identifies it (similar to an opcode).
To execute one, the TRAP instruction is called with the trap code of the desired routine.
*/
/*
LC-3提供了一些预定义的例程,用于执行常见任务和与I/O设备交互。
例如,有从键盘获取输入和向控制台显示字符串的例程。
这些被称为陷阱例程,您可以将其视为LC-3的操作系统API。
每个陷阱例程都被分配一个陷阱代码,用于识别它(类似于操作代码)。
要执行一个,用所需例程的陷阱代码调用TRAP指令。
*/
enum trap_codes
{
TRAP_GETC = 0x20, /* get character from keyboard, not echoed onto the terminal */
TRAP_OUT = 0x21, /* output a character */
TRAP_PUTS = 0x22, /* output a word string */
TRAP_IN = 0x23, /* get character from keyboard, echoed onto the terminal */
TRAP_PUTSP = 0x24, /* output a byte string */
TRAP_HALT = 0x25 /* halt the program */
};
// 数据对齐,RISC精简指令集系统的特征
// 用以数据与bit_count位数对齐
// 有符号整数的extend,计算机内部有符号整数使用补码存储
uint16_t sign_extend(uint16_t x, int bit_count)
{
// if negtative, Two’s Complement
// 当x为负数时,补码表示无法用0扩展,所以需要进行位移操作
if ((x >> (bit_count - 1)) & 1)
{
x |= (0xFFFF << bit_count);
}
// 当x为正直接返回,已经用0 extend
return x;
}
// swap 16 bit big-endian windows like OS
// for little-endian,小端
uint16_t swap16(uint16_t x)
{
return (x << 8) | (x >> 8);
}
// update the flags to indicate its sign
void update_flags(uint16_t r)
{
if (reg[r] == 0)
{
reg[R_COND] = FL_ZRO;
}
else if (reg[r] >> 15) /* a 1 in the left-most bit indicates negative */
{
reg[R_COND] = FL_NEG;
}
else
{
reg[R_COND] = FL_POS;
}
}
/*
从起始地址origin开始读取
*/
void read_image_file(FILE *file)
{
/* the origin tells us where in memory to place the image */
uint16_t origin;
fread(&origin, sizeof(origin), 1, file);
origin = swap16(origin);
/* we know the maximum file size so we only need one fread */
uint16_t max_read = UINT16_MAX - origin;
uint16_t *p = memory + origin;
size_t read = fread(p, sizeof(uint16_t), max_read, file);
/* swap to little endian */
while (read-- > 0)
{
*p = swap16(*p);
++p;
}
}
/* Read Image */
int read_image(const char *image_path)
{
FILE *file = fopen(image_path, "rb");
if (!file)
{
return 0;
};
read_image_file(file);
fclose(file);
return 1;
}
#if defined(_WIN32)
HANDLE hStdin = INVALID_HANDLE_VALUE;
DWORD fdwMode, fdwOldMode;
void disable_input_buffering()
{
hStdin = GetStdHandle(STD_INPUT_HANDLE);
GetConsoleMode(hStdin, &fdwOldMode); /* save old mode */
fdwMode = fdwOldMode ^ ENABLE_ECHO_INPUT /* no input echo */
^ ENABLE_LINE_INPUT; /* return when one or
more characters are available */
SetConsoleMode(hStdin, fdwMode); /* set new mode */
FlushConsoleInputBuffer(hStdin); /* clear buffer */
}
void restore_input_buffering()
{
SetConsoleMode(hStdin, fdwOldMode);
}
uint16_t check_key()
{
return WaitForSingleObject(hStdin, 1000) == WAIT_OBJECT_0 && _kbhit();
}
#endif
/* Memory Access */
void mem_write(uint16_t address, uint16_t val)
{
memory[address] = val;
}
uint16_t mem_read(uint16_t address)
{
if (address == MR_KBSR)
{
if (check_key())
{
memory[MR_KBSR] = (1 << 15);
memory[MR_KBDR] = getchar();
}
else
{
memory[MR_KBSR] = 0;
}
}
return memory[address];
}
void handle_interrupt(int signal)
{
restore_input_buffering();
printf("\n");
exit(-2);
}
int main(int argc, const char *argv[])
{
/* Load Arguments */
if (argc < 2)
{
/* show usage string */
printf("lc3 [image-file1] ...\n");
exit(2);
}
for (int j = 1; j < argc; ++j)
{
if (!read_image(argv[j]))
{
printf("failed to load image: %s\n", argv[j]);
exit(1);
}
}
/* Setup */
signal(SIGINT, handle_interrupt);
disable_input_buffering();
/* since exactly one condition flag should be set at any given time, set the Z flag */
reg[R_COND] = FL_ZRO;
/* set the PC to starting position */
/* 0x3000 is the default */
enum
{
PC_START = 0x3000
};
reg[R_PC] = PC_START;
int running = 1;
while (running)
{
/* FETCH */
uint16_t instr = mem_read(reg[R_PC]++);
uint16_t op = instr >> 12;
switch (op)
{
case OP_ADD:
{
/* destination register (DR) */
uint16_t r0 = (instr >> 9) & 0x7;
/* first operand (SR1) */
uint16_t r1 = (instr >> 6) & 0x7;
/* whether we are in immediate mode */
uint16_t imm_flag = (instr >> 5) & 0x1;
if (imm_flag)
{
uint16_t imm5 = sign_extend(instr & 0x1F, 5);
reg[r0] = reg[r1] + imm5;
}
else
{
uint16_t r2 = instr & 0x7;
reg[r0] = reg[r1] + reg[r2];
}
update_flags(r0);
}
break;
case OP_AND:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t r1 = (instr >> 6) & 0x7;
uint16_t imm_flag = (instr >> 5) & 0x1;
if (imm_flag)
{
uint16_t imm5 = sign_extend(instr & 0x1F, 5);
reg[r0] = reg[r1] & imm5;
}
else
{
uint16_t r2 = instr & 0x7;
reg[r0] = reg[r1] & reg[r2];
}
update_flags(r0);
}
break;
case OP_NOT:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t r1 = (instr >> 6) & 0x7;
reg[r0] = ~reg[r1];
update_flags(r0);
}
break;
case OP_BR:
{
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
uint16_t cond_flag = (instr >> 9) & 0x7;
if (cond_flag & reg[R_COND])
{
reg[R_PC] += pc_offset;
}
}
break;
case OP_JMP:
{
/* Also handles RET */
uint16_t r1 = (instr >> 6) & 0x7;
reg[R_PC] = reg[r1];
}
break;
case OP_JSR:
{
uint16_t long_flag = (instr >> 11) & 1;
reg[R_R7] = reg[R_PC];
if (long_flag)
{
uint16_t long_pc_offset = sign_extend(instr & 0x7FF, 11);
reg[R_PC] += long_pc_offset; /* JSR */
}
else
{
uint16_t r1 = (instr >> 6) & 0x7;
reg[R_PC] = reg[r1]; /* JSRR */
}
}
break;
case OP_LD:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
reg[r0] = mem_read(reg[R_PC] + pc_offset);
update_flags(r0);
}
break;
case OP_LDI:
{
/* destination register (DR) */
uint16_t r0 = (instr >> 9) & 0x7;
/* PCoffset 9*/
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
/* add pc_offset to the current PC, look at that memory location to get the final address */
reg[r0] = mem_read(mem_read(reg[R_PC] + pc_offset));
update_flags(r0);
}
break;
case OP_LDR:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t r1 = (instr >> 6) & 0x7;
uint16_t offset = sign_extend(instr & 0x3F, 6);
reg[r0] = mem_read(reg[r1] + offset);
update_flags(r0);
}
break;
case OP_LEA:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
reg[r0] = reg[R_PC] + pc_offset;
update_flags(r0);
}
break;
case OP_ST:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
mem_write(reg[R_PC] + pc_offset, reg[r0]);
}
break;
case OP_STI:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t pc_offset = sign_extend(instr & 0x1FF, 9);
mem_write(mem_read(reg[R_PC] + pc_offset), reg[r0]);
}
break;
case OP_STR:
{
uint16_t r0 = (instr >> 9) & 0x7;
uint16_t r1 = (instr >> 6) & 0x7;
uint16_t offset = sign_extend(instr & 0x3F, 6);
mem_write(reg[r1] + offset, reg[r0]);
}
break;
case OP_TRAP:
reg[R_R7] = reg[R_PC];
switch (instr & 0xFF)
{
case TRAP_GETC:
/* read a single ASCII char */
reg[R_R0] = (uint16_t)getchar();
update_flags(R_R0);
break;
case TRAP_OUT:
putc((char)reg[R_R0], stdout);
fflush(stdout);
break;
case TRAP_PUTS:
{
/* one char per word */
uint16_t *c = memory + reg[R_R0];
while (*c)
{
putc((char)*c, stdout);
++c;
}
fflush(stdout);
}
break;
case TRAP_IN:
{
printf("Enter a character: ");
char c = getchar();
putc(c, stdout);
fflush(stdout);
reg[R_R0] = (uint16_t)c;
update_flags(R_R0);
}
break;
case TRAP_PUTSP:
{
/* one char per byte (two bytes per word)
here we need to swap back to
big endian format */
uint16_t *c = memory + reg[R_R0];
while (*c)
{
char char1 = (*c) & 0xFF;
putc(char1, stdout);
char char2 = (*c) >> 8;
if (char2)
putc(char2, stdout);
++c;
fflush(stdout);
}
break;
}
case TRAP_HALT:
{
puts("HALT");
fflush(stdout);
running = 0;
}
break;
case OP_RES:
case OP_RTI:
default:
/* BAD OPCODE */
abort();
break;
}
/* Shutdown */
restore_input_buffering();
}
}
}