-
Notifications
You must be signed in to change notification settings - Fork 8
/
references.html
604 lines (541 loc) · 47.1 KB
/
references.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
<!DOCTYPE html>
<html >
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>Chasing The Trajectory of Terrorism: A Machine Learning Based Approach to Achieve Open Source Intelligence</title>
<meta name="description" content="Chasing The Trajectory of Terrorism: A Machine Learning Based Approach to Achieve Open Source Intelligence">
<meta name="generator" content="bookdown 0.7.13 and GitBook 2.6.7">
<meta property="og:title" content="Chasing The Trajectory of Terrorism: A Machine Learning Based Approach to Achieve Open Source Intelligence" />
<meta property="og:type" content="book" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Chasing The Trajectory of Terrorism: A Machine Learning Based Approach to Achieve Open Source Intelligence" />
<meta name="author" content="Pranav Pandya">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<link rel="prev" href="A-appendix-i.html">
<style type="text/css">
p.abstract{
text-align: center;
font-weight: bold;
}
div.abstract{
margin: auto;
width: 90%;
}
</style>
<script src="libs/jquery-2.2.3/jquery.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<script src="libs/htmlwidgets-1.2.1/htmlwidgets.js"></script>
<script src="libs/plotly-binding-4.7.1.9000/plotly.js"></script>
<script src="libs/typedarray-0.1/typedarray.min.js"></script>
<link href="libs/crosstalk-1.0.0/css/crosstalk.css" rel="stylesheet" />
<script src="libs/crosstalk-1.0.0/js/crosstalk.min.js"></script>
<link href="libs/plotly-htmlwidgets-css-1.38.3/plotly-htmlwidgets.css" rel="stylesheet" />
<script src="libs/plotly-main-1.38.3/plotly-latest.min.js"></script>
<script src="libs/proj4js-2.3.15/proj4.js"></script>
<link href="libs/highcharts-6.0.3/css/motion.css" rel="stylesheet" />
<script src="libs/highcharts-6.0.3/highcharts.js"></script>
<script src="libs/highcharts-6.0.3/highcharts-3d.js"></script>
<script src="libs/highcharts-6.0.3/highcharts-more.js"></script>
<script src="libs/highcharts-6.0.3/modules/stock.js"></script>
<script src="libs/highcharts-6.0.3/modules/heatmap.js"></script>
<script src="libs/highcharts-6.0.3/modules/treemap.js"></script>
<script src="libs/highcharts-6.0.3/modules/annotations.js"></script>
<script src="libs/highcharts-6.0.3/modules/boost.js"></script>
<script src="libs/highcharts-6.0.3/modules/data.js"></script>
<script src="libs/highcharts-6.0.3/modules/drag-panes.js"></script>
<script src="libs/highcharts-6.0.3/modules/drilldown.js"></script>
<script src="libs/highcharts-6.0.3/modules/funnel.js"></script>
<script src="libs/highcharts-6.0.3/modules/item-series.js"></script>
<script src="libs/highcharts-6.0.3/modules/offline-exporting.js"></script>
<script src="libs/highcharts-6.0.3/modules/overlapping-datalabels.js"></script>
<script src="libs/highcharts-6.0.3/modules/parallel-coordinates.js"></script>
<script src="libs/highcharts-6.0.3/modules/sankey.js"></script>
<script src="libs/highcharts-6.0.3/modules/solid-gauge.js"></script>
<script src="libs/highcharts-6.0.3/modules/streamgraph.js"></script>
<script src="libs/highcharts-6.0.3/modules/sunburst.js"></script>
<script src="libs/highcharts-6.0.3/modules/vector.js"></script>
<script src="libs/highcharts-6.0.3/modules/wordcloud.js"></script>
<script src="libs/highcharts-6.0.3/modules/xrange.js"></script>
<script src="libs/highcharts-6.0.3/modules/exporting.js"></script>
<script src="libs/highcharts-6.0.3/modules/export-data.js"></script>
<script src="libs/highcharts-6.0.3/maps/modules/map.js"></script>
<script src="libs/highcharts-6.0.3/plugins/grouped-categories.js"></script>
<script src="libs/highcharts-6.0.3/plugins/motion.js"></script>
<script src="libs/highcharts-6.0.3/plugins/multicolor_series.js"></script>
<script src="libs/highcharts-6.0.3/custom/reset.js"></script>
<script src="libs/highcharts-6.0.3/custom/symbols-extra.js"></script>
<script src="libs/highcharts-6.0.3/custom/text-symbols.js"></script>
<script src="libs/highchart-binding-0.6.0/highchart.js"></script>
<script src="libs/kePrint-0.0.1/kePrint.js"></script>
<link href="libs/vis-4.20.1/vis.css" rel="stylesheet" />
<script src="libs/vis-4.20.1/vis.min.js"></script>
<script src="libs/visNetwork-binding-2.0.4/visNetwork.js"></script>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li><a href="./"></a></li>
<li class="divider"></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i>Introduction</a><ul>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#definition-of-terrorism"><i class="fa fa-check"></i>Definition of terrorism</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#problem-statement"><i class="fa fa-check"></i>Problem statement</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#research-design-and-data"><i class="fa fa-check"></i>Research design and data</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#policy-and-practice-implications"><i class="fa fa-check"></i>Policy and practice implications</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#deliverables"><i class="fa fa-check"></i>Deliverables</a></li>
</ul></li>
<li class="chapter" data-level="1" data-path="1-essentials-counter.html"><a href="1-essentials-counter.html"><i class="fa fa-check"></i><b>1</b> Essentials of Counterterrorism</a><ul>
<li class="chapter" data-level="1.1" data-path="1-essentials-counter.html"><a href="1-essentials-counter.html#intelligence-disciplines"><i class="fa fa-check"></i><b>1.1</b> Intelligence disciplines</a></li>
<li class="chapter" data-level="1.2" data-path="1-essentials-counter.html"><a href="1-essentials-counter.html#osint-and-data-relevance"><i class="fa fa-check"></i><b>1.2</b> OSINT and data relevance</a><ul>
<li class="chapter" data-level="1.2.1" data-path="1-essentials-counter.html"><a href="1-essentials-counter.html#open-source-databases-on-terrorism"><i class="fa fa-check"></i><b>1.2.1</b> Open-source databases on terrorism</a></li>
</ul></li>
<li class="chapter" data-level="1.3" data-path="1-essentials-counter.html"><a href="1-essentials-counter.html#whats-important-in-terrorism-research"><i class="fa fa-check"></i><b>1.3</b> What’s important in terrorism research?</a><ul>
<li class="chapter" data-level="1.3.1" data-path="1-essentials-counter.html"><a href="1-essentials-counter.html#primary-vs-secondary-sources"><i class="fa fa-check"></i><b>1.3.1</b> Primary vs secondary sources</a></li>
<li class="chapter" data-level="1.3.2" data-path="1-essentials-counter.html"><a href="1-essentials-counter.html#use-of-statistical-analysis"><i class="fa fa-check"></i><b>1.3.2</b> Use of statistical analysis</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="2" data-path="2-literature-review.html"><a href="2-literature-review.html"><i class="fa fa-check"></i><b>2</b> Literature Review</a><ul>
<li class="chapter" data-level="2.1" data-path="2-literature-review.html"><a href="2-literature-review.html#overview-of-prior-research"><i class="fa fa-check"></i><b>2.1</b> Overview of prior research</a><ul>
<li class="chapter" data-level="2.1.1" data-path="2-literature-review.html"><a href="2-literature-review.html#harsh-realities"><i class="fa fa-check"></i><b>2.1.1</b> Harsh realities</a></li>
<li class="chapter" data-level="2.1.2" data-path="2-literature-review.html"><a href="2-literature-review.html#review-of-relevant-literature"><i class="fa fa-check"></i><b>2.1.2</b> Review of relevant literature</a></li>
<li class="chapter" data-level="2.1.3" data-path="2-literature-review.html"><a href="2-literature-review.html#gtd-and-machine-learning-in-previous-research"><i class="fa fa-check"></i><b>2.1.3</b> GTD and machine learning in previous research</a></li>
</ul></li>
<li class="chapter" data-level="2.2" data-path="2-literature-review.html"><a href="2-literature-review.html#literature-gap-and-relevance"><i class="fa fa-check"></i><b>2.2</b> Literature gap and relevance</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="3-impact-analysis.html"><a href="3-impact-analysis.html"><i class="fa fa-check"></i><b>3</b> Impact Analysis</a><ul>
<li class="chapter" data-level="3.1" data-path="3-impact-analysis.html"><a href="3-impact-analysis.html#data-preparation"><i class="fa fa-check"></i><b>3.1</b> Data preparation</a></li>
<li class="chapter" data-level="3.2" data-path="3-impact-analysis.html"><a href="3-impact-analysis.html#global-overview"><i class="fa fa-check"></i><b>3.2</b> Global overview</a></li>
<li class="chapter" data-level="3.3" data-path="3-impact-analysis.html"><a href="3-impact-analysis.html#the-top-10-most-active-and-violent-groups"><i class="fa fa-check"></i><b>3.3</b> The top 10 most active and violent groups</a></li>
<li class="chapter" data-level="3.4" data-path="3-impact-analysis.html"><a href="3-impact-analysis.html#the-major-and-minor-epicenters"><i class="fa fa-check"></i><b>3.4</b> The major and minor epicenters</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="4-hypothesis-testing.html"><a href="4-hypothesis-testing.html"><i class="fa fa-check"></i><b>4</b> Statistical Hypothesis Testing</a><ul>
<li class="chapter" data-level="4.1" data-path="4-hypothesis-testing.html"><a href="4-hypothesis-testing.html#data-preparation-1"><i class="fa fa-check"></i><b>4.1</b> Data preparation</a></li>
<li class="chapter" data-level="4.2" data-path="4-hypothesis-testing.html"><a href="4-hypothesis-testing.html#correlation-test"><i class="fa fa-check"></i><b>4.2</b> Correlation test</a></li>
<li class="chapter" data-level="4.3" data-path="4-hypothesis-testing.html"><a href="4-hypothesis-testing.html#hypothesis-test-fatalities-vs-groups"><i class="fa fa-check"></i><b>4.3</b> Hypothesis test: fatalities vs groups</a><ul>
<li class="chapter" data-level="4.3.1" data-path="4-hypothesis-testing.html"><a href="4-hypothesis-testing.html#anova-test"><i class="fa fa-check"></i><b>4.3.1</b> ANOVA test</a></li>
<li class="chapter" data-level="4.3.2" data-path="4-hypothesis-testing.html"><a href="4-hypothesis-testing.html#posthoc-test"><i class="fa fa-check"></i><b>4.3.2</b> PostHoc test</a></li>
<li class="chapter" data-level="4.3.3" data-path="4-hypothesis-testing.html"><a href="4-hypothesis-testing.html#interpretation"><i class="fa fa-check"></i><b>4.3.3</b> Interpretation</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="5" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html"><i class="fa fa-check"></i><b>5</b> Pattern discovery</a><ul>
<li class="chapter" data-level="5.1" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#data-preparation-2"><i class="fa fa-check"></i><b>5.1</b> Data preparation</a></li>
<li class="chapter" data-level="5.2" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#explanation-of-key-terms"><i class="fa fa-check"></i><b>5.2</b> Explanation of key terms</a></li>
<li class="chapter" data-level="5.3" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#islamic-state-isil"><i class="fa fa-check"></i><b>5.3</b> Islamic State (ISIL)</a><ul>
<li class="chapter" data-level="5.3.1" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#apriori-model-summary"><i class="fa fa-check"></i><b>5.3.1</b> Apriori model summary</a></li>
<li class="chapter" data-level="5.3.2" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#top-5-patterns-isil"><i class="fa fa-check"></i><b>5.3.2</b> Top 5 patterns (ISIL)</a></li>
<li class="chapter" data-level="5.3.3" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#network-graph-isil"><i class="fa fa-check"></i><b>5.3.3</b> Network graph (ISIL)</a></li>
</ul></li>
<li class="chapter" data-level="5.4" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#taliban"><i class="fa fa-check"></i><b>5.4</b> Taliban</a><ul>
<li class="chapter" data-level="5.4.1" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#apriori-model-summary-1"><i class="fa fa-check"></i><b>5.4.1</b> Apriori model summary</a></li>
<li class="chapter" data-level="5.4.2" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#top-5-patterns-taliban"><i class="fa fa-check"></i><b>5.4.2</b> Top 5 patterns (Taliban)</a></li>
<li class="chapter" data-level="5.4.3" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#network-graph-taliban"><i class="fa fa-check"></i><b>5.4.3</b> Network graph (Taliban)</a></li>
</ul></li>
<li class="chapter" data-level="5.5" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#boko-haram"><i class="fa fa-check"></i><b>5.5</b> Boko Haram</a><ul>
<li class="chapter" data-level="5.5.1" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#apriori-model-summary-2"><i class="fa fa-check"></i><b>5.5.1</b> Apriori model summary</a></li>
<li class="chapter" data-level="5.5.2" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#top-5-patterns-boko-haram"><i class="fa fa-check"></i><b>5.5.2</b> Top 5 patterns (Boko Haram)</a></li>
<li class="chapter" data-level="5.5.3" data-path="5-pattern-discovery.html"><a href="5-pattern-discovery.html#network-graph-boko-haram"><i class="fa fa-check"></i><b>5.5.3</b> Network graph (Boko Haram)</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="6" data-path="6-time-series.html"><a href="6-time-series.html"><i class="fa fa-check"></i><b>6</b> Time-series Forecasting</a><ul>
<li class="chapter" data-level="6.1" data-path="6-time-series.html"><a href="6-time-series.html#afghanistan-predict-future-attacks"><i class="fa fa-check"></i><b>6.1</b> Afghanistan (Predict future attacks)</a><ul>
<li class="chapter" data-level="6.1.1" data-path="6-time-series.html"><a href="6-time-series.html#data-preparation-3"><i class="fa fa-check"></i><b>6.1.1</b> Data preparation</a></li>
<li class="chapter" data-level="6.1.2" data-path="6-time-series.html"><a href="6-time-series.html#seasonality-analysis"><i class="fa fa-check"></i><b>6.1.2</b> Seasonality analysis</a></li>
<li class="chapter" data-level="6.1.3" data-path="6-time-series.html"><a href="6-time-series.html#correlation-test-1"><i class="fa fa-check"></i><b>6.1.3</b> Correlation test</a></li>
<li class="chapter" data-level="6.1.4" data-path="6-time-series.html"><a href="6-time-series.html#modelling"><i class="fa fa-check"></i><b>6.1.4</b> Modelling</a></li>
<li class="chapter" data-level="6.1.5" data-path="6-time-series.html"><a href="6-time-series.html#evaluating-models-performance"><i class="fa fa-check"></i><b>6.1.5</b> Evaluating models’ Performance</a></li>
<li class="chapter" data-level="6.1.6" data-path="6-time-series.html"><a href="6-time-series.html#ensemble"><i class="fa fa-check"></i><b>6.1.6</b> Ensemble</a></li>
<li class="chapter" data-level="6.1.7" data-path="6-time-series.html"><a href="6-time-series.html#forecast-future-number-of-attacks"><i class="fa fa-check"></i><b>6.1.7</b> Forecast future number of attacks</a></li>
</ul></li>
<li class="chapter" data-level="6.2" data-path="6-time-series.html"><a href="6-time-series.html#iraq-predict-future-fatalities"><i class="fa fa-check"></i><b>6.2</b> Iraq (Predict future fatalities)</a><ul>
<li class="chapter" data-level="6.2.1" data-path="6-time-series.html"><a href="6-time-series.html#data-preparation-4"><i class="fa fa-check"></i><b>6.2.1</b> Data preparation</a></li>
<li class="chapter" data-level="6.2.2" data-path="6-time-series.html"><a href="6-time-series.html#seasonality-analysis-1"><i class="fa fa-check"></i><b>6.2.2</b> Seasonality analysis</a></li>
<li class="chapter" data-level="6.2.3" data-path="6-time-series.html"><a href="6-time-series.html#correlation-test-2"><i class="fa fa-check"></i><b>6.2.3</b> Correlation test</a></li>
<li class="chapter" data-level="6.2.4" data-path="6-time-series.html"><a href="6-time-series.html#modelling-1"><i class="fa fa-check"></i><b>6.2.4</b> Modelling</a></li>
<li class="chapter" data-level="6.2.5" data-path="6-time-series.html"><a href="6-time-series.html#ensemble-1"><i class="fa fa-check"></i><b>6.2.5</b> Ensemble</a></li>
<li class="chapter" data-level="6.2.6" data-path="6-time-series.html"><a href="6-time-series.html#forecast-future-fatalities"><i class="fa fa-check"></i><b>6.2.6</b> Forecast future fatalities</a></li>
</ul></li>
<li class="chapter" data-level="6.3" data-path="6-time-series.html"><a href="6-time-series.html#sahel-region-predict-future-attacks"><i class="fa fa-check"></i><b>6.3</b> SAHEL Region (Predict future attacks)</a><ul>
<li class="chapter" data-level="6.3.1" data-path="6-time-series.html"><a href="6-time-series.html#data-preparation-5"><i class="fa fa-check"></i><b>6.3.1</b> Data preparation</a></li>
<li class="chapter" data-level="6.3.2" data-path="6-time-series.html"><a href="6-time-series.html#seasonality-analysis-2"><i class="fa fa-check"></i><b>6.3.2</b> Seasonality analysis</a></li>
<li class="chapter" data-level="6.3.3" data-path="6-time-series.html"><a href="6-time-series.html#correlation-test-3"><i class="fa fa-check"></i><b>6.3.3</b> Correlation test</a></li>
<li class="chapter" data-level="6.3.4" data-path="6-time-series.html"><a href="6-time-series.html#modelling-2"><i class="fa fa-check"></i><b>6.3.4</b> Modelling</a></li>
<li class="chapter" data-level="6.3.5" data-path="6-time-series.html"><a href="6-time-series.html#ensemble-2"><i class="fa fa-check"></i><b>6.3.5</b> Ensemble</a></li>
<li class="chapter" data-level="6.3.6" data-path="6-time-series.html"><a href="6-time-series.html#forecast-future-attacks"><i class="fa fa-check"></i><b>6.3.6</b> Forecast future attacks</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="7" data-path="7-classification.html"><a href="7-classification.html"><i class="fa fa-check"></i><b>7</b> Predicting Class Probabilities</a><ul>
<li class="chapter" data-level="7.1" data-path="7-classification.html"><a href="7-classification.html#evolution-of-gradient-boosting-machines"><i class="fa fa-check"></i><b>7.1</b> Evolution of Gradient Boosting Machines</a><ul>
<li class="chapter" data-level="7.1.1" data-path="7-classification.html"><a href="7-classification.html#lightgbm"><i class="fa fa-check"></i><b>7.1.1</b> LightGBM</a></li>
<li class="chapter" data-level="7.1.2" data-path="7-classification.html"><a href="7-classification.html#the-mechanism-behind-the-improvised-accuracy"><i class="fa fa-check"></i><b>7.1.2</b> The mechanism behind the improvised accuracy</a></li>
</ul></li>
<li class="chapter" data-level="7.2" data-path="7-classification.html"><a href="7-classification.html#data-preparation-6"><i class="fa fa-check"></i><b>7.2</b> Data preparation</a></li>
<li class="chapter" data-level="7.3" data-path="7-classification.html"><a href="7-classification.html#overview-of-the-target-variable"><i class="fa fa-check"></i><b>7.3</b> Overview of the target variable</a><ul>
<li class="chapter" data-level="7.3.1" data-path="7-classification.html"><a href="7-classification.html#dealing-with-class-imbalance"><i class="fa fa-check"></i><b>7.3.1</b> Dealing with class imbalance</a></li>
</ul></li>
<li class="chapter" data-level="7.4" data-path="7-classification.html"><a href="7-classification.html#feature-engineering"><i class="fa fa-check"></i><b>7.4</b> Feature engineering</a></li>
<li class="chapter" data-level="7.5" data-path="7-classification.html"><a href="7-classification.html#validation-strategy"><i class="fa fa-check"></i><b>7.5</b> Validation strategy</a></li>
<li class="chapter" data-level="7.6" data-path="7-classification.html"><a href="7-classification.html#hyperparameter-optimization"><i class="fa fa-check"></i><b>7.6</b> Hyperparameter optimization</a></li>
<li class="chapter" data-level="7.7" data-path="7-classification.html"><a href="7-classification.html#modelling-3"><i class="fa fa-check"></i><b>7.7</b> Modelling</a><ul>
<li class="chapter" data-level="7.7.1" data-path="7-classification.html"><a href="7-classification.html#model-evaluation"><i class="fa fa-check"></i><b>7.7.1</b> Model evaluation</a></li>
<li class="chapter" data-level="7.7.2" data-path="7-classification.html"><a href="7-classification.html#confusion-matrix"><i class="fa fa-check"></i><b>7.7.2</b> Confusion Matrix</a></li>
<li class="chapter" data-level="7.7.3" data-path="7-classification.html"><a href="7-classification.html#feature-importance"><i class="fa fa-check"></i><b>7.7.3</b> Feature importance</a></li>
</ul></li>
<li class="chapter" data-level="7.8" data-path="7-classification.html"><a href="7-classification.html#model-interpretation"><i class="fa fa-check"></i><b>7.8</b> Model interpretation</a></li>
</ul></li>
<li class="chapter" data-level="8" data-path="8-conclusion.html"><a href="8-conclusion.html"><i class="fa fa-check"></i><b>8</b> Discussion and Conclusion</a><ul>
<li class="chapter" data-level="8.1" data-path="8-conclusion.html"><a href="8-conclusion.html#research-limitations-and-future-work"><i class="fa fa-check"></i><b>8.1</b> Research limitations and future work</a></li>
</ul></li>
<li class="appendix"><span><b>Appendix</b></span></li>
<li class="chapter" data-level="A" data-path="A-appendix-i.html"><a href="A-appendix-i.html"><i class="fa fa-check"></i><b>A</b> Appendix I</a><ul>
<li class="chapter" data-level="A.1" data-path="A-appendix-i.html"><a href="A-appendix-i.html#initial-data-preparation-script"><i class="fa fa-check"></i><b>A.1</b> Initial data preparation script</a></li>
<li class="chapter" data-level="A.2" data-path="A-appendix-i.html"><a href="A-appendix-i.html#list-of-variables-and-short-description"><i class="fa fa-check"></i><b>A.2</b> List of variables and short description</a></li>
<li class="chapter" data-level="A.3" data-path="A-appendix-i.html"><a href="A-appendix-i.html#r-session-info"><i class="fa fa-check"></i><b>A.3</b> R Session Info:</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
<li class="divider"></li>
<li><a href="https://github.com/rstudio/bookdown" target="blank">Published with bookdown</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Chasing The Trajectory of Terrorism: A Machine Learning Based Approach to Achieve Open Source Intelligence</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="references" class="section level1 unnumbered">
<h1>References</h1>
<!--
This manually sets the header for this unnumbered chapter.
-->
<!--
To remove the indentation of the first entry.
-->
<!--
To create a hanging indent and spacing between entries. These three lines may need to be removed for styles that don't require the hanging indent.
-->
<p> </p>
<!--
This is just for testing with more citations for the bibliography at the end. Add other entries into the list here if you'd like them to appear in the bibliography even if they weren't explicitly cited in the document.
-->
<div id="refs" class="references">
<div>
<p>Al Jazeera. (2014). Sunni rebels declare new ’Islamic caliphate’. Retrieved from <a href="https://www.aljazeera.com/news/middleeast/2014/06/isil-declares-new-islamic-caliphate-201462917326669749.html" class="uri">https://www.aljazeera.com/news/middleeast/2014/06/isil-declares-new-islamic-caliphate-201462917326669749.html</a></p>
</div>
<div>
<p>Andri Signorell et mult. al. (2018). DescTools: Tools for Descriptive Statistics. Retrieved from <a href="https://cran.r-project.org/package=DescTools" class="uri">https://cran.r-project.org/package=DescTools</a></p>
</div>
<div>
<p>Anomaly.io. (2015, December). Extracting Seasonality and Trend from Data: Decomposition Using R. <em>Anomaly</em>. Retrieved from <a href="https://anomaly.io/seasonal-trend-decomposition-in-r/" class="uri">https://anomaly.io/seasonal-trend-decomposition-in-r/</a></p>
</div>
<div>
<p>Bauer, P. (2018). <em>Writing a Reproducible Paper in R Markdown</em> (SSRN Scholarly Paper No. ID 3175518). Rochester, NY: Social Science Research Network. Retrieved from <a href="https://papers.ssrn.com/abstract=3175518" class="uri">https://papers.ssrn.com/abstract=3175518</a></p>
</div>
<div>
<p>Beck, N., King, G., & Zeng, L. (2000). Improving Quantitative Studies of International Conflict: A Conjecture. <em>American Political Science Review</em>, <em>94</em>(1), 21–35. <a href="http://doi.org/10.1017/S0003055400220078" class="uri">http://doi.org/10.1017/S0003055400220078</a></p>
</div>
<div>
<p>Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. <em>Journal of Machine Learning Research</em>, <em>13</em>(Feb), 281–305. Retrieved from <a href="http://www.jmlr.org/papers/v13/bergstra12a.html" class="uri">http://www.jmlr.org/papers/v13/bergstra12a.html</a></p>
</div>
<div>
<p>Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for Hyper-parameter Optimization. In <em>Proceedings of the 24th International Conference on Neural Information Processing Systems</em> (pp. 2546–2554). USA: Curran Associates Inc. Retrieved from <a href="http://dl.acm.org/citation.cfm?id=2986459.2986743" class="uri">http://dl.acm.org/citation.cfm?id=2986459.2986743</a></p>
</div>
<div>
<p>Block, M. (2016). Applying situational crime prevention to terrorism against airports and aircrafts. <em>Electronic Theses and Dissertations</em>. <a href="http://doi.org/10.18297/etd/2479" class="uri">http://doi.org/10.18297/etd/2479</a></p>
</div>
<div>
<p>Brennan, P. (2016). <em>The detection of outbreaks in terrorist incidents using time series anomaly detection methods</em> (PhD thesis). Institute of Technology, Tallaght. Retrieved from <a href="https://github.com/brennap3/thesis_2/blob/master/thesis.pdf" class="uri">https://github.com/brennap3/thesis_2/blob/master/thesis.pdf</a></p>
</div>
<div>
<p>Cederman, L.-E., & Weidmann, N. B. (2017). Predicting armed conflict: Time to adjust our expectations? <em>Science</em>, <em>355</em>(6324), 474–476. <a href="http://doi.org/10.1126/science.aal4483" class="uri">http://doi.org/10.1126/science.aal4483</a></p>
</div>
<div>
<p>Ceron, A., Curini, L., & Iacus, S. M. (2018). ISIS at its apogee: The Arabic discourse on Twitter and what we can learn from that about ISIS support and Foreign Fighters. <em>arXiv:1804.04059 [Cs]</em>. Retrieved from <a href="http://arxiv.org/abs/1804.04059" class="uri">http://arxiv.org/abs/1804.04059</a></p>
</div>
<div>
<p>Chadefaux, T. (2014). Early warning signals for war in the news. <em>Journal of Peace Research</em>, <em>51</em>(1), 5–18. <a href="http://doi.org/10.1177/0022343313507302" class="uri">http://doi.org/10.1177/0022343313507302</a></p>
</div>
<div>
<p>Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In <em>Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining</em> (pp. 785–794). New York, NY, USA: ACM. <a href="http://doi.org/10.1145/2939672.2939785" class="uri">http://doi.org/10.1145/2939672.2939785</a></p>
</div>
<div>
<p>Chen, T., Tong, H., Benesty, M., & Tang, Y. (2018). Understand your dataset with Xgboost. Retrieved from <a href="https://cran.r-project.org/web/packages/xgboost/vignettes/discoverYourData.html" class="uri">https://cran.r-project.org/web/packages/xgboost/vignettes/discoverYourData.html</a></p>
</div>
<div>
<p>CIA. (2013). INTelligence: Human Intelligence. Retrieved from <a href="https://www.cia.gov/news-information/featured-story-archive/2010-featured-story-archive/intelligence-human-intelligence.html" class="uri">https://www.cia.gov/news-information/featured-story-archive/2010-featured-story-archive/intelligence-human-intelligence.html</a></p>
</div>
<div>
<p>Clauset, A., & Woodard, R. (2013). Estimating the historical and future probabilities of large terrorist events. <em>The Annals of Applied Statistics</em>, <em>7</em>(4), 1838–1865. <a href="http://doi.org/10.1214/12-AOAS614" class="uri">http://doi.org/10.1214/12-AOAS614</a></p>
</div>
<div>
<p>Colaresi, M., & Mahmood, Z. (2017). Do the robot , Do the robot: Lessons from machine learning to improve conflict forecasting , Lessons from machine learning to improve conflict forecasting. <em>Journal of Peace Research</em>, <em>54</em>(2), 193–214. <a href="http://doi.org/10.1177/0022343316682065" class="uri">http://doi.org/10.1177/0022343316682065</a></p>
</div>
<div>
<p>Crone, M. (2017). Islamic State’s Incursion into North Africa and Sahel: A Threat to al-Qaeda? <em>Connections</em>, <em>16</em>(1), 63–76. Retrieved from <a href="http://www.jstor.org/stable/26326471" class="uri">http://www.jstor.org/stable/26326471</a></p>
</div>
<div>
<p>D. Fisher, W. (1958). On Grouping for Maximum Homogeneity. <em>Journal of the American Statistical Association - J AMER STATIST ASSN</em>, <em>53</em>, 789–798. <a href="http://doi.org/10.1080/01621459.1958.10501479" class="uri">http://doi.org/10.1080/01621459.1958.10501479</a></p>
</div>
<div>
<p>Ding, F., Ge, Q., Jiang, D., Fu, J., & Hao, M. (07AD–2017). Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach. <em>PLOS ONE</em>, <em>12</em>(6), e0179057. <a href="http://doi.org/10.1371/journal.pone.0179057" class="uri">http://doi.org/10.1371/journal.pone.0179057</a></p>
</div>
<div>
<p>Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. <em>The Annals of Statistics</em>, <em>29</em>(5), 1189–1232. Retrieved from <a href="http://www.jstor.org/stable/2699986" class="uri">http://www.jstor.org/stable/2699986</a></p>
</div>
<div>
<p>Fujita, K., Shinomoto, S., & Rocha, L. E. C. (2016). Correlations and forecast of death tolls in the Syrian conflict. <em>arXiv:1612.06746 [Physics, Stat]</em>. Retrieved from <a href="http://arxiv.org/abs/1612.06746" class="uri">http://arxiv.org/abs/1612.06746</a></p>
</div>
<div>
<p>Geddes, B. (1990/ed). How the Cases You Choose Affect the Answers You Get: Selection Bias in Comparative Politics. <em>Political Analysis</em>, <em>2</em>, 131–150. <a href="http://doi.org/10.1093/pan/2.1.131" class="uri">http://doi.org/10.1093/pan/2.1.131</a></p>
</div>
<div>
<p>Gordon, A. (2007). Transient and continuant authors in a research field: The case of terrorism. <em>Scientometrics</em>, <em>72</em>(2), 213–224. <a href="http://doi.org/10.1007/s11192-007-1714-z" class="uri">http://doi.org/10.1007/s11192-007-1714-z</a></p>
</div>
<div>
<p>Groce, A. (2018). LibGuides: Intelligence Studies: Types of Intelligence Collection. Retrieved from <a href="//usnwc.libguides.com/c.php?g=494120\&p=3381426" class="uri">//usnwc.libguides.com/c.php?g=494120\&p=3381426</a></p>
</div>
<div>
<p>Gundabathula, V. T., & Vaidhehi, V. (2018). An Efficient Modelling of Terrorist Groups in India using Machine Learning Algorithms. <em>Indian Journal of Science and Technology</em>, <em>11</em>(15). <a href="http://doi.org/10.17485/ijst/2018/v11i15/121766" class="uri">http://doi.org/10.17485/ijst/2018/v11i15/121766</a></p>
</div>
<div>
<p>Hahsler, M., Buchta, C., Gruen, B., Hornik, K., Johnson, I., & Borgelt, C. (2018, April). Arules: Mining Association Rules and Frequent Itemsets. Retrieved from <a href="https://CRAN.R-project.org/package=arules" class="uri">https://CRAN.R-project.org/package=arules</a></p>
</div>
<div>
<p>Heger, L. L. (2010). <em>In the crosshairs : Explaining violence against civilians</em> (PhD thesis). UC San Diego. Retrieved from <a href="https://escholarship.org/uc/item/6705k88s" class="uri">https://escholarship.org/uc/item/6705k88s</a></p>
</div>
<div>
<p>Hyndman, R. J., & Athanasopoulos, G. (2018). <em>Forecasting: Principles and practice</em>. OTexts. Retrieved from <a href="https://otexts.org/fpp2" class="uri">https://otexts.org/fpp2</a></p>
</div>
<div>
<p>Indiana University Libraries. (2007, July). Identifying Primary and Secondary Sources. <em>Indiana University Bloomington</em>. Retrieved from <a href="https://libraries.indiana.edu/identifying-primary-and-secondary-sources" class="uri">https://libraries.indiana.edu/identifying-primary-and-secondary-sources</a></p>
</div>
<div>
<p>Jacob van Veen, H., Nguyen, L., Dat, T., & Segnini, A. (2015). Kaggle Ensembling Guide | MLWave. <em>Kaggle Ensembling Guide</em>. Retrieved from <a href="https://mlwave.com/kaggle-ensembling-guide/" class="uri">https://mlwave.com/kaggle-ensembling-guide/</a></p>
</div>
<div>
<p>James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). Tree-Based Methods. In <em>An Introduction to Statistical Learning</em> (pp. 303–335). Springer, New York, NY. <a href="http://doi.org/10.1007/978-1-4614-7138-7_8" class="uri">http://doi.org/10.1007/978-1-4614-7138-7_8</a></p>
</div>
<div>
<p>Johnson, M. K. and K. (2018). <em>Feature Engineering and Selection: A Practical Approach for Predictive Models</em>. Retrieved from <a href="http://www.feat.engineering/intro-intro.html" class="uri">http://www.feat.engineering/intro-intro.html</a></p>
</div>
<div>
<p>Jongman, A. J. (1988). <em>Political Terrorism: A New Guide To Actors, Authors, Concepts, Data Bases, Theories, And Literature</em>. Transaction Publishers.</p>
</div>
<div>
<p>Karthiyayini, R., & Balasubramanian, D. R. (2016). Affinity Analysis and Association Rule Mining using Apriori Algorithm in Market Basket Analysis, 6.</p>
</div>
<div>
<p>Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., … Liu, T.-Y. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In <em>Advances in Neural Information Processing Systems 30</em> (pp. 3146–3154). Curran Associates, Inc. Retrieved from <a href="http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf" class="uri">http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf</a></p>
</div>
<div>
<p>Klausen, J., Marks, C., & Zaman, T. (2016). Finding Online Extremists in Social Networks. <em>arXiv:1610.06242 [Physics, Stat]</em>. Retrieved from <a href="http://arxiv.org/abs/1610.06242" class="uri">http://arxiv.org/abs/1610.06242</a></p>
</div>
<div>
<p>Klimberg, R., & McCullough, B. D. (2017). <em>Fundamentals of Predictive Analytics with JMP, Second Edition</em>. SAS Institute.</p>
</div>
<div>
<p>Liautaud, A. (2018). U.S. military presence in Africa grew again, but “we’re not at war,” top U.S. commander says. <em>VICE News</em>. Retrieved from <a href="https://news.vice.com/en_us/article/j5b3pb/us-military-presence-in-africa-grew-again-but-were-not-at-war-top-us-commander-says" class="uri">https://news.vice.com/en_us/article/j5b3pb/us-military-presence-in-africa-grew-again-but-were-not-at-war-top-us-commander-says</a></p>
</div>
<div>
<p>Livera, A. M. D., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing. <em>Journal of the American Statistical Association</em>, <em>106</em>(496), 1513–1527. <a href="http://doi.org/10.1198/jasa.2011.tm09771" class="uri">http://doi.org/10.1198/jasa.2011.tm09771</a></p>
</div>
<div>
<p>Lowenthal, M. M., & Clark, R. M. (2015). <em>The Five Disciplines of Intelligence Collection</em>. SAGE.</p>
</div>
<div>
<p>Lula, K. (2014). <em>Terrorized into compliance: Why countries submit to financial counterterrorism</em> (PhD thesis). Rutgers University - Graduate School - Newark. Retrieved from <a href="https://rucore.libraries.rutgers.edu/rutgers-lib/42328/" class="uri">https://rucore.libraries.rutgers.edu/rutgers-lib/42328/</a></p>
</div>
<div>
<p>Lum, C., Kennedy, L. W., & Sherley, A. J. (2006). THE EFFECTIVENESS OF COUNTER-TERRORISM STRATEGIES A Campbell Systematic Review.</p>
</div>
<div>
<p>Microsoft Corporation. (2018). LightGBM Documentation. Microsoft Corporation. Retrieved from <a href="https://media.readthedocs.org/pdf/lightgbm/latest/lightgbm.pdf" class="uri">https://media.readthedocs.org/pdf/lightgbm/latest/lightgbm.pdf</a></p>
</div>
<div>
<p>Mo, H., Meng, X., Li, J., & Zhao, S. (2017). Terrorist event prediction based on revealing data. In <em>2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(</em> (pp. 239–244). <a href="http://doi.org/10.1109/ICBDA.2017.8078815" class="uri">http://doi.org/10.1109/ICBDA.2017.8078815</a></p>
</div>
<div>
<p>Muchlinski, D., Siroky, D., He, J., & Kocher, M. (2016/ed). Comparing Random Forest with Logistic Regression for Predicting Class-Imbalanced Civil War Onset Data. <em>Political Analysis</em>, <em>24</em>(1), 87–103. <a href="http://doi.org/10.1093/pan/mpv024" class="uri">http://doi.org/10.1093/pan/mpv024</a></p>
</div>
<div>
<p>National Consortium for the Study of Terrorism and Responses to Terrorism (START). (2016). Global Terrorism Database [Data file]. University of Maryland. Retrieved from <a href="https://www.start.umd.edu/gtd" class="uri">https://www.start.umd.edu/gtd</a></p>
</div>
<div>
<p>Nawaz, M. A. (2017). <em>How terrorism ends: The impact of lethality of terrorist groups on their longevity</em> (PhD thesis). Retrieved from <a href="http://krex.k-state.edu/dspace/handle/2097/35788" class="uri">http://krex.k-state.edu/dspace/handle/2097/35788</a></p>
</div>
<div>
<p>Neunhoeffer, M., & Sternberg, S. (2018). How Cross-Validation Can Go Wrong and What to Do About it. | Marcel Neunhoeffer. <em>Forthcoming, Political Analysis</em>. Retrieved from <a href="http://www.marcel-neunhoeffer.com/publication/pa_cross-validation/" class="uri">http://www.marcel-neunhoeffer.com/publication/pa_cross-validation/</a></p>
</div>
<div>
<p>NIC. (2007). Nonstate Actors: Impact on International Relations and Implications for the United States. National Intelligence Council. Retrieved from <a href="https://www.dni.gov/files/documents/nonstate_actors_2007.pdf" class="uri">https://www.dni.gov/files/documents/nonstate_actors_2007.pdf</a></p>
</div>
<div>
<p>Nielsen, D. (2016). <em>Tree Boosting With XGBoost-Why Does XGBoost Win“ Every” Machine Learning Competition?</em> (Master’s Thesis). NTNU.</p>
</div>
<div>
<p>Onuoha, F. C., & Oyewole, S. (2018). Anatomy of Boko Haram: The Rise and Decline of a Violent Group in Nigeria. <em>Al Jazeera</em>, 10. Retrieved from <a href="http://studies.aljazeera.net/mritems/Documents/2018/4/23/4f179351e3244e1882a6033e0bf43d89_100.pdf" class="uri">http://studies.aljazeera.net/mritems/Documents/2018/4/23/4f179351e3244e1882a6033e0bf43d89_100.pdf</a></p>
</div>
<div>
<p>Oracle. (n.d.). Oracle Enterprise Performance Management Workspace, Fusion Edition User’s Guide. Retrieved from <a href="https://docs.oracle.com/cd/E40248_01/epm.1112/cb_statistical/frameset.htm?ch07s02s03s04.html" class="uri">https://docs.oracle.com/cd/E40248_01/epm.1112/cb_statistical/frameset.htm?ch07s02s03s04.html</a></p>
</div>
<div>
<p>Pafka, S. (2018, July). GBM-perf: Performance of various open source GBM implementations. Retrieved from <a href="https://github.com/szilard/GBM-perf" class="uri">https://github.com/szilard/GBM-perf</a></p>
</div>
<div>
<p>Pandya, P. (2018). TalkingData: EDA to Model Evaluation | LB: 0.9683 | Kaggle. Retrieved from <a href="https://www.kaggle.com/pranav84/talkingdata-eda-to-model-evaluation-lb-0-9683" class="uri">https://www.kaggle.com/pranav84/talkingdata-eda-to-model-evaluation-lb-0-9683</a></p>
</div>
<div>
<p>Patel, P. (2009). Introduction to Quantitative Methods. Retrieved from <a href="http://hls.harvard.edu/content/uploads/2011/12/quantitative_methods.pdf" class="uri">http://hls.harvard.edu/content/uploads/2011/12/quantitative_methods.pdf</a></p>
</div>
<div>
<p>Ranstorp, M. (2006). <em>Mapping Terrorism Research: State of the Art, Gaps and Future Direction</em>. Routledge.</p>
</div>
<div>
<p>Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package. <em>Update</em>, <em>1</em>(1), 2007.</p>
</div>
<div>
<p>Samuel, A. L. (1959). Some studies in machine learning using the game of Checkers. <em>Ibm Journal of Research and Development</em>, 71–105.</p>
</div>
<div>
<p>Schuurman, B. (2018). Research on Terrorism, 20072016: A Review of Data, Methods, and Authorship. <em>Terrorism and Political Violence</em>, <em>0</em>(0), 1–16. <a href="http://doi.org/10.1080/09546553.2018.1439023" class="uri">http://doi.org/10.1080/09546553.2018.1439023</a></p>
</div>
<div>
<p>Shi, H. (2007). <em>Best-first Decision Tree Learning</em> (Thesis). The University of Waikato. Retrieved from <a href="https://researchcommons.waikato.ac.nz/handle/10289/2317" class="uri">https://researchcommons.waikato.ac.nz/handle/10289/2317</a></p>
</div>
<div>
<p>Siddique, H. (2013). Edward Snowden’s live Q&A: Eight things we learned. <em>The Guardian</em>. Retrieved from <a href="http://www.theguardian.com/world/2013/jun/18/edward-snowden-live-q-and-a-eight-things" class="uri">http://www.theguardian.com/world/2013/jun/18/edward-snowden-live-q-and-a-eight-things</a></p>
</div>
<div>
<p>Silke, A. (2001). The Devil You Know: Continuing Problems with Research on Terrorism. <em>Terrorism and Political Violence</em>, <em>13</em>(4), 1–14. <a href="http://doi.org/10.1080/09546550109609697" class="uri">http://doi.org/10.1080/09546550109609697</a></p>
</div>
<div>
<p>Silke, A. (2004). <em>Research on Terrorism: Trends, Achievements and Failures</em>. Routledge.</p>
</div>
<div>
<p>Stockholm International Peace Research Institute. (2017). SIPRI Yearbook 2017, Summary. Retrieved from <a href="https://www.sipri.org/sites/default/files/2017-09/yb17-summary-eng.pdf" class="uri">https://www.sipri.org/sites/default/files/2017-09/yb17-summary-eng.pdf</a></p>
</div>
<div>
<p>Tanner, A. (2014). Examining the Need for a Cyber Intelligence Discipline. <em>Journal of Homeland and National Security Perspectives</em>, <em>1</em>(1), 38–48. Retrieved from <a href="https://journals.tdl.org/jhnsp/index.php/jhnsp/article/view/16" class="uri">https://journals.tdl.org/jhnsp/index.php/jhnsp/article/view/16</a></p>
</div>
<div>
<p>The Interagency OPSEC Support Staff. (1996). Operations Security Intelligence Threat Handbook. <em>Federation Of American Scientists</em>. Retrieved from <a href="https://fas.org/irp/nsa/ioss/threat96/part02.htm" class="uri">https://fas.org/irp/nsa/ioss/threat96/part02.htm</a></p>
</div>
<div>
<p>Walton, O. (2011). Early warning indicators of violent conflict: Helpdesk report. Retrieved from <a href="https://researchportal.bath.ac.uk/en/publications/early-warning-indicators-of-violent-conflict-helpdesk-report" class="uri">https://researchportal.bath.ac.uk/en/publications/early-warning-indicators-of-violent-conflict-helpdesk-report</a></p>
</div>
<div>
<p>Ward Lab. (2014, May). The coup in Thailand and progress in forecasting. <em>Predictive Heuristics</em>. Retrieved from <a href="https://predictiveheuristics.com/2014/05/22/the-coup-in-thailand-and-progress-in-forecasting/" class="uri">https://predictiveheuristics.com/2014/05/22/the-coup-in-thailand-and-progress-in-forecasting/</a></p>
</div>
<div>
<p>Xie, Y. (2016). <em>Bookdown: Authoring Books and Technical Documents with R Markdown</em>. CRC Press.</p>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="A-appendix-i.html" class="navigation navigation-prev navigation-unique" aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/lunr.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"google": false,
"linkedin": false,
"weibo": false,
"instapper": false,
"vk": false,
"all": ["facebook", "google", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": null,
"text": null
},
"download": [["thesis.pdf", "PDF"], ["thesis.epub", "EPUB"], ["thesis.docx", "Word"]],
"toc": {
"collapse": "section"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "";
if (src === "" || src === "true") src = "https://cdn.bootcss.com/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:" && /^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>