forked from lh3/minimap2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pe.c
177 lines (166 loc) · 5.56 KB
/
pe.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#include <stdlib.h>
#include <math.h>
#include "mmpriv.h"
#include "kvec.h"
void mm_select_sub_multi(void *km, float pri_ratio, float pri1, float pri2, int max_gap_ref, int min_diff, int best_n, int n_segs, const int *qlens, int *n_, mm_reg1_t *r)
{
if (pri_ratio > 0.0f && *n_ > 0) {
int i, k, n = *n_, n_2nd = 0;
int max_dist = n_segs == 2? qlens[0] + qlens[1] + max_gap_ref : 0;
for (i = k = 0; i < n; ++i) {
int to_keep = 0;
if (r[i].parent == i) { // primary
to_keep = 1;
} else if (r[i].score + min_diff >= r[r[i].parent].score) {
to_keep = 1;
} else {
mm_reg1_t *p = &r[r[i].parent], *q = &r[i];
if (p->rev == q->rev && p->rid == q->rid && q->re - p->rs < max_dist && p->re - q->rs < max_dist) { // child and parent are close on the ref
if (q->score >= p->score * pri1)
to_keep = 1;
} else {
int is_par_both = (n_segs == 2 && p->qs < qlens[0] && p->qe > qlens[0]);
int is_chi_both = (n_segs == 2 && q->qs < qlens[0] && q->qe > qlens[0]);
if (is_chi_both || is_chi_both == is_par_both) {
if (q->score >= p->score * pri_ratio)
to_keep = 1;
} else { // the remaining case: is_chi_both == 0 && is_par_both == 1
if (q->score >= p->score * pri2)
to_keep = 1;
}
}
}
if (to_keep && r[i].parent != i) {
if (n_2nd++ >= best_n) to_keep = 0; // don't keep if there are too many secondary hits
}
if (to_keep) r[k++] = r[i];
else if (r[i].p) free(r[i].p);
}
if (k != n) mm_sync_regs(km, k, r); // removing hits requires sync()
*n_ = k;
}
}
void mm_set_pe_thru(const int *qlens, int *n_regs, mm_reg1_t **regs)
{
int s, i, n_pri[2], pri[2];
n_pri[0] = n_pri[1] = 0;
pri[0] = pri[1] = -1;
for (s = 0; s < 2; ++s)
for (i = 0; i < n_regs[s]; ++i)
if (regs[s][i].id == regs[s][i].parent)
++n_pri[s], pri[s] = i;
if (n_pri[0] == 1 && n_pri[1] == 1) {
mm_reg1_t *p = ®s[0][pri[0]];
mm_reg1_t *q = ®s[1][pri[1]];
if (p->rid == q->rid && p->rev == q->rev && abs(p->rs - q->rs) < 3 && abs(p->re - p->re) < 3
&& ((p->qs == 0 && qlens[1] - q->qe == 0) || (q->qs == 0 && qlens[0] - p->qe == 0)))
{
p->pe_thru = q->pe_thru = 1;
}
}
}
#include "ksort.h"
typedef struct {
int s, rev;
uint64_t key;
mm_reg1_t *r;
} pair_arr_t;
#define sort_key_pair(a) ((a).key)
KRADIX_SORT_INIT(pair, pair_arr_t, sort_key_pair, 8)
void mm_pair(void *km, int max_gap_ref, int pe_bonus, int sub_diff, int match_sc, const int *qlens, int *n_regs, mm_reg1_t **regs)
{
int i, j, s, n, last[2], dp_thres, segs = 0, max_idx[2];
int64_t max;
pair_arr_t *a;
kvec_t(uint64_t) sc = {0,0,0};
a = (pair_arr_t*)kmalloc(km, (n_regs[0] + n_regs[1]) * sizeof(pair_arr_t));
for (s = n = 0, dp_thres = 0; s < 2; ++s) {
int max = 0;
for (i = 0; i < n_regs[s]; ++i) {
a[n].s = s;
a[n].r = ®s[s][i];
a[n].rev = a[n].r->rev;
a[n].key = (uint64_t)a[n].r->rid << 32 | a[n].r->rs<<1 | (s^a[n].rev);
max = max > a[n].r->p->dp_max? max : a[n].r->p->dp_max;
++n;
segs |= 1<<s;
}
dp_thres += max;
}
if (segs != 3) {
kfree(km, a); // only one end is mapped
return;
}
dp_thres -= pe_bonus;
if (dp_thres < 0) dp_thres = 0;
radix_sort_pair(a, a + n);
max = -1;
max_idx[0] = max_idx[1] = -1;
last[0] = last[1] = -1;
kv_resize(uint64_t, km, sc, (size_t)n);
for (i = 0; i < n; ++i) {
if (a[i].key & 1) { // reverse first read or forward second read
mm_reg1_t *q, *r;
if (last[a[i].rev] < 0) continue;
r = a[i].r;
q = a[last[a[i].rev]].r;
if (r->rid != q->rid || r->rs - q->re > max_gap_ref) continue;
for (j = last[a[i].rev]; j >= 0; --j) {
int64_t score;
if (a[j].rev != a[i].rev || a[j].s == a[i].s) continue;
q = a[j].r;
if (r->rid != q->rid || r->rs - q->re > max_gap_ref) break;
if (r->p->dp_max + q->p->dp_max < dp_thres) continue;
score = (int64_t)(r->p->dp_max + q->p->dp_max) << 32 | (r->hash + q->hash);
if (score > max)
max = score, max_idx[a[j].s] = j, max_idx[a[i].s] = i;
kv_push(uint64_t, km, sc, score);
}
} else { // forward first read or reverse second read
last[a[i].rev] = i;
}
}
if (sc.n > 1)
radix_sort_64(sc.a, sc.a + sc.n);
if (sc.n > 0 && max > 0) { // found at least one pair
int n_sub = 0, mapq_pe;
mm_reg1_t *r[2];
r[0] = a[max_idx[0]].r, r[1] = a[max_idx[1]].r;
r[0]->proper_frag = r[1]->proper_frag = 1;
for (s = 0; s < 2; ++s) {
if (r[s]->id != r[s]->parent) { // then lift to primary and update parent
mm_reg1_t *p = ®s[s][r[s]->parent];
for (i = 0; i < n_regs[s]; ++i)
if (regs[s][i].parent == p->id)
regs[s][i].parent = r[s]->id;
p->mapq = 0;
}
if (!r[s]->sam_pri) { // then sync sam_pri
for (i = 0; i < n_regs[s]; ++i)
regs[s][i].sam_pri = 0;
r[s]->sam_pri = 1;
}
}
mapq_pe = r[0]->mapq > r[1]->mapq? r[0]->mapq : r[1]->mapq;
for (i = 0; i < (int)sc.n; ++i)
if ((sc.a[i]>>32) + sub_diff >= (uint64_t)max>>32)
++n_sub;
if (sc.n > 1) {
int mapq_pe_alt;
mapq_pe_alt = (int)(6.02f * ((max>>32) - (sc.a[sc.n - 2]>>32)) / match_sc - 4.343f * logf(n_sub)); // n_sub > 0 because it counts the optimal, too
mapq_pe = mapq_pe < mapq_pe_alt? mapq_pe : mapq_pe_alt;
}
if (r[0]->mapq < mapq_pe) r[0]->mapq = (int)(.2f * r[0]->mapq + .8f * mapq_pe + .499f);
if (r[1]->mapq < mapq_pe) r[1]->mapq = (int)(.2f * r[1]->mapq + .8f * mapq_pe + .499f);
if (sc.n == 1) {
if (r[0]->mapq < 2) r[0]->mapq = 2;
if (r[1]->mapq < 2) r[1]->mapq = 2;
} else if ((uint64_t)max>>32 > sc.a[sc.n - 2]>>32) {
if (r[0]->mapq < 1) r[0]->mapq = 1;
if (r[1]->mapq < 1) r[1]->mapq = 1;
}
}
kfree(km, a);
kfree(km, sc.a);
mm_set_pe_thru(qlens, n_regs, regs);
}