-
Notifications
You must be signed in to change notification settings - Fork 5
/
run_many.sh
231 lines (214 loc) · 6.47 KB
/
run_many.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/bin/bash
set -e
size=8
ckpt_root=./pretrained;
data_root=/mnt/e/data_derived;
cache_root=/mnt/e/cache;
slowfast_root=../slowfast;
models=(cpc_01 cpc_02 airsim_04 gaborpyramid3d gaborpyramid3d_motionless MotionNet SlowFast_Fast I3D r3d_18 mc3_18 r2plus1d_18)
datasets=(mt1_norm_neutralbg mt2 pvc1-repeats pvc4 mst_norm_neutralbg)
max_cells=(83 43 22 24 35)
for dataset_num in {0..4};
do
dataset=${datasets[$dataset_num]}
max_cell=${max_cells[$dataset_num]}
for model in "${models[@]}";
do
echo "$dataset" "$model"
for ((subset = 0; subset <= $max_cell; subset++))
do
python train_convex.py \
--exp_name fit_all \
--dataset "$dataset" \
--features "$model" \
--subset "$subset" \
--batch_size 8 \
--cache_root $cache_root \
--ckpt_root $ckpt_root \
--data_root $data_root \
--slowfast_root $slowfast_root \
--aggregator downsample \
--aggregator_sz $size \
--skip_existing \
--subsample_layers \
--autotune \
--no_save \
--save_predictions \
--method ridge \
--pca 500
# Clear cache.
rm -f $cache_root/*
done
done
done
dataset=mst_norm_neutralbg
models=(SlowFast_Fast)
for model in "${models[@]}";
do
for subset in {0..35};
do
python train_convex.py \
--exp_name 20210524 \
--dataset "$dataset" \
--features "$model" \
--subset "$subset" \
--batch_size 4 \
--slowfast_root $slowfast_root \
--ckpt_root $ckpt_root \
--aggregator downsample \
--aggregator_sz 8 \
--pca 500 \
--no_save \
--cache_root $cache_root \
--data_root $data_root \
--autotune \
--subsample_layers \
--skip_existing
# Clear cache.
rm -f $cache_root/*
done
done
# dataset=pvc4
# models=(airsim_04)
# for model in "${models[@]}";
# do
# for subset in {0..24};
# do
# python train_convex.py \
# --exp_name Benchmark \
# --dataset "$dataset" \
# --features "$model" \
# --subset "$subset" \
# --batch_size 4 \
# --slowfast_root $slowfast_root \
# --ckpt_root $ckpt_root \
# --aggregator downsample \
# --aggregator_sz 8 \
# --pca 500 \
# --no_save \
# --cache_root $cache_root \
# --data_root $data_root \
# --autotune \
# --skip_existing
# # Clear cache.
# rm -f $cache_root/*
# done
# done
# models=(airsim_04
# for subset in {0..24};
# do
# python train_convex.py \
# --exp_name Benchmark \
# --dataset "pvc4" \
# --features "$model" \
# --subset "$subset" \
# --batch_size 4 \
# --slowfast_root $slowfast_root \
# --ckpt_root $ckpt_root \
# --aggregator downsample \
# --aggregator_sz 8 \
# --pca 500 \
# --no_save \
# --cache_root $cache_root \
# --data_root $data_root \
# --autotune \
# --skip_existing
# # Clear cache.
# rm -f $cache_root/*
# done
#dataset=mst_norm_airsim # mst_norm_neutralbg
#dataset=mst_norm_cpc
#models=(airsim_04)
# models=(cpc_01 cpc_02)
# airsim_04 gaborpyramid3d gaborpyramid3d_motionless MotionNet ShiftNet Slow I3D r3d_18 mc3_18 r2plus1d_18)
# size=8
# for dataset in mst_norm_airsim mst_norm_neutralbg;
# do
# for model in "${models[@]}";
# do
# for subset in {0..35};
# do
# python train_convex.py \
# --exp_name 20210324 \
# --dataset "$dataset" \
# --features "$model" \
# --subset "$subset" \
# --batch_size 8 \
# --cache_root $cache_root \
# --ckpt_root $ckpt_root \
# --data_root $data_root \
# --slowfast_root $slowfast_root \
# --aggregator downsample \
# --aggregator_sz $size \
# --skip_existing \
# --subsample_layers \
# --autotune \
# --no_save \
# --save_predictions \
# --method ridge \
# --pca 500 \
# # Clear cache.
# rm -f $cache_root/*
# done
# done
# done
# models=(gaborpyramid3d gaborpyramid3d_motionless cpc_01 cpc_02 airsim_04 MotionNet SlowFast_Fast Slow I3D r3d_18 mc3_18 r2plus1d_18)
# size=8
# dataset="dorsal_norm_neutralbg"
# for model in "${models[@]}";
# do
# for subset in {0..22};
# do
# python train_convex.py \
# --exp_name 20210427 \
# --dataset "$dataset" \
# --features "$model" \
# --subset "$subset" \
# --batch_size 8 \
# --cache_root $cache_root \
# --ckpt_root $ckpt_root \
# --data_root $data_root \
# --slowfast_root $slowfast_root \
# --aggregator downsample \
# --aggregator_sz $size \
# --skip_existing \
# --subsample_layers \
# --autotune \
# --no_save \
# --save_predictions \
# --method ridge \
# --pca 500 \
# # Clear cache.
# rm -f $cache_root/*
# done
# done
models=(cpc_01 cpc_02 airsim_04 gaborpyramid3d gaborpyramid3d_motionless MotionNet SlowFast_Fast Slow I3D r3d_18 mc3_18 r2plus1d_18)
size=8
dataset="mt1_norm_neutralbg"
for model in "${models[@]}";
do
for subset in {0..83};
do
python train_convex.py \
--exp_name 20210503 \
--dataset "$dataset" \
--features "$model" \
--subset "$subset" \
--batch_size 8 \
--cache_root $cache_root \
--ckpt_root $ckpt_root \
--data_root $data_root \
--slowfast_root $slowfast_root \
--aggregator downsample \
--aggregator_sz $size \
--skip_existing \
--subsample_layers \
--autotune \
--no_save \
--save_predictions \
--method ridge \
--pca 500 \
# Clear cache.
rm -f $cache_root/*
done
done