-
Notifications
You must be signed in to change notification settings - Fork 2
/
example.m
393 lines (312 loc) · 17.8 KB
/
example.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
% compute results for paper [1]
%
% images
% relative RMSEs and mean structural SSIMs
%
% -------------------------------------------------------------------------
% REFERENCES:
% -------------------------------------------------------------------------
% [1] M. F. Schiffner, "Rhombic grids reduce the number of voxels in fast pulse-echo ultrasound imaging,"
% 2022 IEEE Int. Ultrasonics Symp. (IUS), Venice, Italy, Oct. 2022, pp. 1–4.
% DOI: https://doi.org/10.1109/IUS54386.2022.9958278
% arXiv: https://arxiv.org/abs/2210.04818
% YouTube: https://www.youtube.com/watch?v=T6dkazW5ZuM
%
% -------------------------------------------------------------------------
% ABOUT:
% -------------------------------------------------------------------------
% author: Martin F. Schiffner
% date: 2022-11-13
% modified: 2022-12-02
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% clear workspace
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all;
clear;
clc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load RF data acquired from tissue phantom
load( 'data_RF.mat' );
% bandwidth
f_bounds = [ 2.25, 6.75 ] * 1e6;
% F-number for dynamic receive aperture
F_number = 1;
% field of view (FOV)
FOV_x = [ - 64, 64 ] * element_pitch;
FOV_z = ( 64 / 4 + [ 0, 128 ] ) * element_pitch;
%--------------------------------------------------------------------------
% interpolation
%--------------------------------------------------------------------------
% a) numbers of zeros per axis to pad to avoid overlap
N_pad = [ 511, 511 ] ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% create grids
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% 1.) predict spectral passband to determine grid spacings
%--------------------------------------------------------------------------
% bounds on the wavenumber
k_lb = 2 * pi * f_bounds( 1 ) / c_avg;
k_ub = 2 * pi * f_bounds( 2 ) / c_avg;
fprintf( 'k_lb = %.1f rad / m\n', k_lb );
fprintf( 'k_ub = %.1f rad / m\n', k_ub );
% bounds on the receive angle phi [ Sect. II-A1 ]
phi_lb = - atan( 1 / ( 2 * F_number ) );
phi_ub = - phi_lb;
fprintf( 'phi_ub = %.1f°\n', rad2deg( phi_ub ) );
% bounds on the angular spatial frequencies [ Eq. (3) ]
k_hat_x_lb = k_ub * ( sin( theta_incident( 1 ) ) + sin( phi_lb ) );
k_hat_x_ub = k_ub * ( sin( theta_incident( end ) ) + sin( phi_ub ) );
k_hat_z_lb = k_lb * ( min( cos( theta_incident ) ) + cos( phi_lb ) );
k_hat_z_ub = k_ub * ( max( cos( theta_incident ) ) + 1 );
fprintf( 'k_hat_x_lb: %.1f\n', k_hat_x_lb );
fprintf( 'k_hat_x_ub: %.1f\n', k_hat_x_ub );
fprintf( 'k_hat_z_lb: %.1f\n', k_hat_z_lb );
fprintf( 'k_hat_z_ub: %.1f\n', k_hat_z_ub );
%--------------------------------------------------------------------------
% 1.) orthogonal grid (usual spacings)
%--------------------------------------------------------------------------
% a) independent parameters
grid_orthogonal_usual.delta_x = element_pitch / 4;
grid_orthogonal_usual.delta_z = grid_orthogonal_usual.delta_x;
% b) dependent parameters
grid_orthogonal_usual.N_x = floor( diff( FOV_x ) / grid_orthogonal_usual.delta_x );
grid_orthogonal_usual.N_z = floor( diff( FOV_z ) / grid_orthogonal_usual.delta_z );
grid_orthogonal_usual.volume = grid_orthogonal_usual.delta_x * grid_orthogonal_usual.delta_z;
grid_orthogonal_usual.offset_x = FOV_x( 1 ) + ( diff( FOV_x ) - ( grid_orthogonal_usual.N_x - 1 ) * grid_orthogonal_usual.delta_x ) / 2;
grid_orthogonal_usual.offset_z = FOV_z( 1 ) + ( diff( FOV_z ) - ( grid_orthogonal_usual.N_z - 1 ) * grid_orthogonal_usual.delta_z ) / 2;
grid_orthogonal_usual.positions_x = grid_orthogonal_usual.offset_x + (0:( grid_orthogonal_usual.N_x - 1 )) * grid_orthogonal_usual.delta_x;
grid_orthogonal_usual.positions_z = grid_orthogonal_usual.offset_z + (0:( grid_orthogonal_usual.N_z - 1 )) * grid_orthogonal_usual.delta_z;
[ grid_orthogonal_usual.X, grid_orthogonal_usual.Z ] = meshgrid( grid_orthogonal_usual.positions_x, grid_orthogonal_usual.positions_z );
grid_orthogonal_usual.positions = [ grid_orthogonal_usual.X( : ), grid_orthogonal_usual.Z( : ) ];
%--------------------------------------------------------------------------
% 2.) orthogonal grid (optimal spacings)
%--------------------------------------------------------------------------
% a) independent parameters
grid_orthogonal_optimal.delta_x = 2 * pi / ( k_hat_x_ub - k_hat_x_lb );
grid_orthogonal_optimal.delta_z = 2 * pi / ( k_hat_z_ub - k_hat_z_lb );
% b) dependent parameters
grid_orthogonal_optimal.N_x = floor( diff( FOV_x ) / grid_orthogonal_optimal.delta_x );
grid_orthogonal_optimal.N_z = floor( diff( FOV_z ) / grid_orthogonal_optimal.delta_z );
grid_orthogonal_optimal.volume = grid_orthogonal_optimal.delta_x * grid_orthogonal_optimal.delta_z;
grid_orthogonal_optimal.offset_x = FOV_x( 1 ) + ( diff( FOV_x ) - ( grid_orthogonal_optimal.N_x - 1 ) * grid_orthogonal_optimal.delta_x ) / 2;
grid_orthogonal_optimal.offset_z = FOV_z( 1 ) + ( diff( FOV_z ) - ( grid_orthogonal_optimal.N_z - 1 ) * grid_orthogonal_optimal.delta_z ) / 2;
grid_orthogonal_optimal.positions_x = grid_orthogonal_optimal.offset_x + (0:( grid_orthogonal_optimal.N_x - 1 )) * grid_orthogonal_optimal.delta_x;
grid_orthogonal_optimal.positions_z = grid_orthogonal_optimal.offset_z + (0:( grid_orthogonal_optimal.N_z - 1 )) * grid_orthogonal_optimal.delta_z;
[ grid_orthogonal_optimal.X, grid_orthogonal_optimal.Z ] = meshgrid( grid_orthogonal_optimal.positions_x, grid_orthogonal_optimal.positions_z );
grid_orthogonal_optimal.positions = [ grid_orthogonal_optimal.X( : ), grid_orthogonal_optimal.Z( : ) ];
%--------------------------------------------------------------------------
% 3.) proposed 120° rhombic grid
%--------------------------------------------------------------------------
% angles
angle_1_deg = 30;
angle_2_deg = 90;
% lengths
length_1 = k_hat_z_ub - k_hat_z_lb;
length_2 = k_hat_z_ub - k_hat_z_lb;
fprintf( 'length_1: %.10f / m (%.1f / m)\n', length_1, length_1 );
fprintf( 'length_2: %.10f / m (%.1f / m)\n', length_2, length_2 );
% spectral basis
dir_1 = [ cos( deg2rad( angle_1_deg ) ), sin( deg2rad( angle_1_deg ) ) ];
dir_2 = [ cos( deg2rad( angle_2_deg ) ), sin( deg2rad( angle_2_deg ) ) ];
% vectors
vec_1 = length_1 * dir_1;
vec_2 = length_2 * dir_2;
% sampling basis
A = [ vec_1; vec_2 ];
B = 2 * pi * eye( 2 );
U = A \ B;
U_norm = vecnorm( U );
grid_rhombic.volume = abs( det( U ) );
grid_rhombic.N_1 = floor( diff( FOV_x ) / U( 1, 1 ) );
grid_rhombic.N_2 = floor( diff( FOV_z ) / U( 2, 2 ) );
grid_rhombic.offset_1 = FOV_x( 1 ) + ( diff( FOV_x ) - ( grid_rhombic.N_1 - 1 ) * U( 1, 1 ) ) / 2;
grid_rhombic.offset_2 = FOV_z( 1 ) + ( diff( FOV_z ) - ( grid_rhombic.N_2 - 1 ) * U( 2, 2 ) ) / 2;
%
N_samples_rhombic_rows = zeros( grid_rhombic.N_2, 1 );
grid_rhombic.positions = zeros( 1, 2 );
index = 0;
for l_2 = 0:( grid_rhombic.N_2 - 1 )
l_1_lb = ceil( ( FOV_x( 1 ) - grid_rhombic.offset_1 - l_2 * U( 1, 2 ) ) / U( 1, 1 ) );
l_1_ub = floor( ( FOV_x( 2 ) - grid_rhombic.offset_1 - l_2 * U( 1, 2 ) ) / U( 1, 1 ) );
for l_1 = l_1_lb:l_1_ub
index = index + 1;
grid_rhombic.positions( index, : ) = [ grid_rhombic.offset_1, grid_rhombic.offset_2 ] + l_1 * U( :, 1 ).' + l_2 * U( :, 2 ).';
end
N_samples_rhombic_rows( l_2 + 1 ) = l_1_ub - l_1_lb + 1;
end
%--------------------------------------------------------------------------
% 4.) combine grids in cell array
%--------------------------------------------------------------------------
grids = { grid_orthogonal_usual, grid_orthogonal_optimal, grid_rhombic };
str_grids = { 'Orthogonal grid (usual spacings)', 'Orthogonal grid (optimal spacings)', '120° rhombic grid' };
%--------------------------------------------------------------------------
% 5.) display grids
%--------------------------------------------------------------------------
% create new figure
figure( 1 );
% iterate grids
for index_grid = 1:numel( grids )
% create new subplot
subplot( 1, numel( grids ), index_grid );
scatter( grids{ index_grid }.positions( :, 1 ), grids{ index_grid }.positions( :, 2 ) );
% draw field of view
line( FOV_x, FOV_z( 1 ) * ones( 1, 2 ), 'Color', 'r' );
line( FOV_x, FOV_z( 2 ) * ones( 1, 2 ), 'Color', 'r' );
line( FOV_x( 1 ) * ones( 1, 2 ), FOV_z, 'Color', 'r');
line( FOV_x( 2 ) * ones( 1, 2 ), FOV_z, 'Color', 'r' );
% set limits
xlim( [ FOV_x( 1 ) - 5e-3, FOV_x( 2 ) + 5e-3 ] );
ylim( [ FOV_z( 1 ) - 5e-3, FOV_z( 2 ) + 5e-3 ] );
title( str_grids{ index_grid } );
end % for index_grid = 1:numel( grids )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% beamform RF data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% parameters
index_t0 = 16;
% specify cell array for B-mode images
images_single = cell( numel( grids ), numel( theta_incident ) );
times_elapsed = zeros( numel( grids ), numel( theta_incident ) );
images_cpwc = cell( numel( grids ), 1 );
% iterate grids
for index_grid = 1:numel( grids )
% iterate steering angles
for index_theta = 1:numel( theta_incident )
% call delay-and-sum (DAS) algorithm
[ images_single{ index_grid, index_theta }, times_elapsed( index_grid, index_theta ) ] = das_pw( grids{ index_grid }.positions, data_RF( :, :, index_theta ), f_s, theta_incident( index_theta ), element_width, element_pitch, c_avg, f_bounds, index_t0, [], F_number );
end % for index_theta = 1:numel( theta_incident )
% 2.) create (compound) images
images_cpwc{ index_grid } = sum( cat( 2, images_single{ index_grid, : } ), 2 );
end % for index_grid = 1:numel( grids )
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% interpolate all B-mode images to usual orthogonal grid
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% 0.) frequency axes
%--------------------------------------------------------------------------
N_dsft_x = grid_orthogonal_usual.N_x + N_pad( 1 );
N_dsft_z = grid_orthogonal_usual.N_z + N_pad( 2 );
% shift
index_shift_x = ceil( N_dsft_x / 2);
% axes of discrete angular spatial frequencies
axis_k_x = 2 * pi * (( index_shift_x - N_dsft_x ):( index_shift_x - 1 ) ) / ( N_dsft_x * grid_orthogonal_usual.delta_x );
axis_k_z = 2 * pi * (0:( N_dsft_z - 1 ) ) / ( N_dsft_z * grid_orthogonal_usual.delta_z );
% grid of discrete angular spatial frequencies
[ K_x, K_z ] = meshgrid( axis_k_x, axis_k_z );
%--------------------------------------------------------------------------
% 1.) interpolation function
%--------------------------------------------------------------------------
% specify cell array
filter_dft_single = cell( numel( theta_incident ), 1 );
% iterate steering angles
for index_theta = 1:numel( theta_incident )
% compute wavenumbers
K = ( K_x.^2 + K_z.^2 ) ./ ( 2 * ( sin( theta_incident( index_theta ) ) * K_x + cos( theta_incident( index_theta ) ) * K_z ) );
% restrict to relevant bandwidth
indicator_k = ( K >= k_lb ) & ( K <= k_ub );
sin_phi = 10 * ones( size( K ) );
cos_phi = 10 * ones( size( K ) );
sin_phi( indicator_k ) = K_x( indicator_k ) ./ K( indicator_k ) - sin( theta_incident( index_theta ) );
cos_phi( indicator_k ) = K_z( indicator_k ) ./ K( indicator_k ) - cos( theta_incident( index_theta ) );
filter_dft_single{ index_theta } = indicator_k & ( sin_phi >= sin( phi_lb ) ) & ( sin_phi <= sin( phi_ub ) ) & cos_phi >= cos( phi_lb );
end % for index_theta = 1:numel( theta_incident )
filter_dft_compound = any( cat( 3, filter_dft_single{ : } ), 3 );
filter_compound = ifft2( filter_dft_compound );
filter_compound_dB = 20 * log10( abs( fftshift( filter_compound ) ) / max( abs( filter_compound( : ) ) ) );
figure( 2 );
subplot( 1, 2, 1 );
imagesc( filter_dft_compound );
title( 'Passband filter (k-space)' );
subplot( 1, 2, 2 );
imagesc( filter_compound_dB, [ -70, 0 ] );
title( 'Interpolation kernel (x-space)' );
colormap gray;
%--------------------------------------------------------------------------
% 2.) usual orthogonal grid
%--------------------------------------------------------------------------
% a) samples
samples_usual = grid_orthogonal_usual.volume * reshape( images_cpwc{ 1 }, [ grid_orthogonal_usual.N_z, grid_orthogonal_usual.N_x ] );
samples_usual_dB = 20 * log10( abs( samples_usual ) / max( abs( samples_usual( : ) ) ) );
% b) spectrum
samples_usual_dft = fftshift( fft2( samples_usual ), 2 );
samples_usual_dft_dB = illustration.dB( samples_usual_dft, 20 );
%--------------------------------------------------------------------------
% 3.) optimal orthogonal grid
%--------------------------------------------------------------------------
% a) samples (coarse)
samples_optimal = reshape( images_cpwc{ 2 }, [ grid_orthogonal_optimal.N_z, grid_orthogonal_optimal.N_x ] );
samples_optimal_dB = 20 * log10( abs( samples_optimal ) / max( abs( samples_optimal(:) ) ) );
% b) spectrum
samples_optimal_dft = grid_orthogonal_optimal.volume * dft_positions( images_cpwc{ 2 }, grids{ 2 }.positions, axis_k_x, axis_k_z );
% apply phase shift
samples_optimal_dft = samples_optimal_dft .* exp( 1j * axis_k_x * grid_orthogonal_usual.offset_x ) .* exp( 1j * axis_k_z.' * grid_orthogonal_usual.offset_z );
samples_optimal_dft_dB = illustration.dB( samples_optimal_dft, 20 );
% c) samples (fine)
samples_optimal_interp = ifft2( ifftshift( samples_optimal_dft .* filter_dft_compound, 2 ) );
samples_optimal_interp = samples_optimal_interp( 1:grid_orthogonal_usual.N_z, 1:grid_orthogonal_usual.N_x );
samples_optimal_interp_dB = illustration.dB( samples_optimal_interp, 20 );
%--------------------------------------------------------------------------
% 4.) rhombic grid
%--------------------------------------------------------------------------
% a) spectrum
samples_rhombic_dft = grid_rhombic.volume * dft_positions( images_cpwc{ 3 }, grid_rhombic.positions, axis_k_x, axis_k_z );
% apply phase shift
samples_rhombic_dft = samples_rhombic_dft .* exp( 1j * axis_k_x * grid_orthogonal_usual.offset_x ) .* exp( 1j * axis_k_z.' * grid_orthogonal_usual.offset_z );
% logarithmic compression
samples_rhombic_dft_dB = illustration.dB( samples_rhombic_dft, 20 );
% b) samples (fine)
samples_rhombic_interp = ifft2( ifftshift( samples_rhombic_dft .* filter_dft_compound, 2 ) );
samples_rhombic_interp = samples_rhombic_interp( 1:grid_orthogonal_usual.N_z, 1:grid_orthogonal_usual.N_x );
samples_rhombic_interp_dB = illustration.dB( samples_rhombic_interp, 20 );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% compute errors and show results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%--------------------------------------------------------------------------
% 1.) metrics
%--------------------------------------------------------------------------
error_orthogonal_optimal = samples_usual - samples_optimal_interp;
error_orthogonal_optimal_dB = 20 * log10( abs( error_orthogonal_optimal ) / max( abs( samples_usual( : ) ) ) );
error_rhombic = samples_usual - samples_rhombic_interp;
error_rhombic_dB = 20 * log10( abs( error_rhombic ) / max( abs( samples_usual( : ) ) ) );
rel_RMSE_orthogonal_optimal = norm( error_orthogonal_optimal( : ) ) / norm( samples_usual( : ) );
rel_RMSE_rhombic = norm( error_rhombic( : ) ) / norm( samples_usual( : ) );
fprintf( 'Rel. RMSE (optimal vs. usual): %.10f %% (%.1f %%)\n', rel_RMSE_orthogonal_optimal * 1e2, rel_RMSE_orthogonal_optimal * 1e2 );
fprintf( 'Rel. RMSE (rhombic vs. usual): %.10f %% (%.1f %%)\n', rel_RMSE_rhombic * 1e2, rel_RMSE_rhombic * 1e2 );
% SSIM_orthogonal_usual = ssim( samples_orthogonal_fine_dB, samples_orthogonal_fine_interp_dB );
SSIM_orthogonal_optimal = ssim( samples_optimal_interp_dB, samples_usual_dB );
SSIM_rhombic = ssim( samples_rhombic_interp_dB, samples_usual_dB );
fprintf( 'Mean SSIM Index (optimal vs. usual): %.10f %% (%.1f %%)\n', SSIM_orthogonal_optimal * 1e2, SSIM_orthogonal_optimal * 1e2 );
fprintf( 'Mean SSIM Index (rhombic vs. usual): %.10f %% (%.1f %%)\n', SSIM_rhombic * 1e2, SSIM_rhombic * 1e2 );
c_limits = [-60,0];
%--------------------------------------------------------------------------
% 2.) show results
%--------------------------------------------------------------------------
figure( 1 );
subplot( 4, 3, 2 );
imagesc( grid_orthogonal_optimal.positions_x, grid_orthogonal_optimal.positions_z, samples_optimal_dB, c_limits );
subplot( 4, 3, 4 );
imagesc( axis_k_x, axis_k_z, samples_usual_dft_dB, c_limits );
subplot( 4, 3, 5 );
imagesc( axis_k_x, axis_k_z, samples_optimal_dft_dB, c_limits );
subplot( 4, 3, 6 );
imagesc( axis_k_x, axis_k_z, samples_rhombic_dft_dB, c_limits );
subplot( 4, 3, 7 );
imagesc( grid_orthogonal_usual.positions_x, grid_orthogonal_usual.positions_z, samples_usual_dB, c_limits );
subplot( 4, 3, 8 );
imagesc( grid_orthogonal_usual.positions_x, grid_orthogonal_usual.positions_z, samples_optimal_interp_dB, c_limits );
title( sprintf( 'mean SSIM index: %.2f %%', SSIM_orthogonal_optimal * 1e2 ) );
subplot( 4, 3, 9 );
imagesc( grid_orthogonal_usual.positions_x, grid_orthogonal_usual.positions_z, samples_rhombic_interp_dB, c_limits );
title( sprintf( 'mean SSIM index: %.2f %%', SSIM_rhombic * 1e2 ) );
% subplot( 4, 3, 10 );
% imagesc( positions_x, positions_z, error_orthogonal_fine_dB, c_limits );
subplot( 4, 3, 11 );
imagesc( grid_orthogonal_usual.positions_x, grid_orthogonal_usual.positions_z, error_orthogonal_optimal_dB, c_limits );
title( sprintf( 'rel. RMSE: %.2f %%', rel_RMSE_orthogonal_optimal * 1e2 ) );
subplot( 4, 3, 12 );
imagesc( grid_orthogonal_usual.positions_x, grid_orthogonal_usual.positions_z, error_rhombic_dB, c_limits );
title( sprintf( 'rel. RMSE: %.2f %%', rel_RMSE_rhombic * 1e2 ) );
colormap gray;