-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_bounded.py
23 lines (18 loc) · 1.29 KB
/
run_bounded.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from learners import EMT, StackedLearner
import coba as cb
n_shuffle = 20 #To reproduce the EMT paper results set this to 20
processes = 10
epsilon = 0.1
if __name__ == '__main__':
#the learners we wish to test
learners = [
cb.VowpalEpsilonLearner(epsilon, features=["a","xa"]),
StackedLearner (epsilon, EMT(bound=1000 , scorer="self_consistent_rank", router="eigen", split=300, interactions=['xa'], weight=False), "xa", False, True),
StackedLearner (epsilon, EMT(bound=2000 , scorer="self_consistent_rank", router="eigen", split=300, interactions=['xa'], weight=False), "xa", False, True),
StackedLearner (epsilon, EMT(bound=16000, scorer="self_consistent_rank", router="eigen", split=300, interactions=['xa'], weight=False), "xa", False, True),
StackedLearner (epsilon, EMT(bound=32000, scorer="self_consistent_rank", router="eigen", split=300, interactions=['xa'], weight=False), "xa", False, True),
]
description = "Experiments with bounded memory on EMT."
log = "./results/bounded.log.gz"
env = cb.Environments.from_template("./environments/feurer.json", n_take=32_000, strict=True, n_shuffle=n_shuffle)
cb.Experiment(env, learners, description=description).run(log,processes=processes)