-
Notifications
You must be signed in to change notification settings - Fork 1
/
a23_cache.v
908 lines (744 loc) · 36.3 KB
/
a23_cache.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
//////////////////////////////////////////////////////////////////
// //
// L1 Cache for Amber 2 Core //
// //
// This file is part of the Amber project //
// http://www.opencores.org/project,amber //
// //
// Description //
// Synthesizable L1 Unified Data and Instruction Cache //
// Cache is 4-way, 256 line and 16 bytes per line for //
// a total of 16KB. The cache policy is write-through and //
// read allocate. For swap instructions (SWP and SWPB) the //
// location is evicted from the cache and read from main //
// memory. //
// //
// Author(s): //
// - Conor Santifort, [email protected] //
// //
//////////////////////////////////////////////////////////////////
// //
// Copyright (C) 2010 Authors and OPENCORES.ORG //
// //
// This source file may be used and distributed without //
// restriction provided that this copyright statement is not //
// removed from the file and that any derivative work contains //
// the original copyright notice and the associated disclaimer. //
// //
// This source file is free software; you can redistribute it //
// and/or modify it under the terms of the GNU Lesser General //
// Public License as published by the Free Software Foundation; //
// either version 2.1 of the License, or (at your option) any //
// later version. //
// //
// This source is distributed in the hope that it will be //
// useful, but WITHOUT ANY WARRANTY; without even the implied //
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
// PURPOSE. See the GNU Lesser General Public License for more //
// details. //
// //
// You should have received a copy of the GNU Lesser General //
// Public License along with this source; if not, download it //
// from http://www.opencores.org/lgpl.shtml //
// //
//////////////////////////////////////////////////////////////////
`include "global_defines.v"
`include "a23_config_defines.v"
module a23_cache
#(
// ---------------------------------------------------------
// Cache Configuration
// Limited to Linux 4k page sizes -> 256 lines
parameter CACHE_LINES = 256,
// This cannot be changed without some major surgeory on
// this module
parameter CACHE_WORDS_PER_LINE = 4,
// Changing this parameter is the recommended
// way to change the overall cache size; 2, 4 and 8 ways are supported.
// 2 ways -> 8KB cache
// 4 ways -> 16KB cache
// 8 ways -> 32KB cache
parameter WAYS = `A23_CACHE_WAYS ,
// derived configuration parameters
parameter CACHE_ADDR_WIDTH = log2 ( CACHE_LINES ), // = 8
parameter WORD_SEL_WIDTH = log2 ( CACHE_WORDS_PER_LINE ), // = 2
parameter TAG_ADDR_WIDTH = 32 - CACHE_ADDR_WIDTH - WORD_SEL_WIDTH - 2, // = 20
parameter TAG_WIDTH = TAG_ADDR_WIDTH + 1, // = 21, including Valid flag
parameter CACHE_LINE_WIDTH = CACHE_WORDS_PER_LINE * 32, // = 128
parameter TAG_ADDR32_LSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2, // = 12
parameter CACHE_ADDR32_MSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2 - 1, // = 11
parameter CACHE_ADDR32_LSB = WORD_SEL_WIDTH + 2 , // = 4
parameter WORD_SEL_MSB = WORD_SEL_WIDTH + 2 - 1, // = 3
parameter WORD_SEL_LSB = 2 // = 2
// ---------------------------------------------------------
)
(
input i_clk,
// Read / Write requests from core
input i_select,
input i_exclusive, // exclusive access, part of swap instruction
input [31:0] i_write_data,
input i_write_enable, // core issued write request
input [31:0] i_address, // registered address from execute
input [31:0] i_address_nxt, // un-registered version of address from execute stage
input [3:0] i_byte_enable,
input i_cache_enable, // from co-processor 15 configuration register
input i_cache_flush, // from co-processor 15 register
output [31:0] o_read_data,
input i_core_stall,
output o_stall,
// WB Read Request
output o_wb_req, // Read Request
input [31:0] i_wb_address, // wb bus
input [31:0] i_wb_read_data, // wb bus
input i_wb_stall // wb_stb && !wb_ack
);
`include "a23_localparams.v"
`include "a23_functions.v"
// One-hot encoded
localparam C_INIT = 0,
C_CORE = 1,
C_FILL = 2,
C_INVA = 3,
C_STATES = 4;
localparam [3:0] CS_INIT = 4'd0,
CS_IDLE = 4'd1,
CS_FILL1 = 4'd2,
CS_FILL2 = 4'd3,
CS_FILL3 = 4'd4,
CS_FILL4 = 4'd5,
CS_FILL_COMPLETE = 4'd6,
CS_TURN_AROUND = 4'd7,
CS_WRITE_HIT1 = 4'd8,
CS_EX_DELETE = 4'd9;
reg [3:0] c_state = CS_IDLE;
reg [C_STATES-1:0] source_sel = 1'd1 << C_CORE;
reg [CACHE_ADDR_WIDTH:0] init_count = 'd0;
wire [TAG_WIDTH-1:0] tag_rdata_way [WAYS-1:0];
wire [CACHE_LINE_WIDTH-1:0] data_rdata_way[WAYS-1:0];
wire [WAYS-1:0] data_wenable_way;
wire [WAYS-1:0] data_hit_way;
wire [WAYS-1:0] tag_wenable_way;
reg [WAYS-1:0] select_way = 'd0;
wire [WAYS-1:0] next_way;
reg [WAYS-1:0] valid_bits_r = 'd0;
reg [3:0] random_num = 4'hf;
wire [CACHE_ADDR_WIDTH-1:0] tag_address;
wire [TAG_WIDTH-1:0] tag_wdata;
wire tag_wenable;
wire [CACHE_LINE_WIDTH-1:0] read_miss_wdata;
wire [CACHE_LINE_WIDTH-1:0] write_hit_wdata;
wire [CACHE_LINE_WIDTH-1:0] data_wdata;
wire [CACHE_ADDR_WIDTH-1:0] data_address;
wire [31:0] write_data_word;
wire hit;
wire read_miss;
wire write_miss;
wire write_hit;
reg [31:0] miss_address = 'd0;
wire [CACHE_LINE_WIDTH-1:0] hit_rdata;
wire write_stall;
wire cache_busy_stall;
wire read_stall;
wire enable;
wire [CACHE_ADDR_WIDTH-1:0] address;
reg [CACHE_LINE_WIDTH-1:0] wb_rdata_burst = 'd0;
reg wb_read_buf_valid = 'd0;
reg [31:0] wb_read_buf_address = 'd0;
reg [31:0] wb_read_buf_data = 'd0;
wire wb_read_buf_hit;
wire exclusive_access;
wire ex_read_hit;
reg ex_read_hit_r = 'd0;
reg [WAYS-1:0] ex_read_hit_way = 'd0;
reg [CACHE_ADDR_WIDTH-1:0] ex_read_address;
wire ex_read_hit_clear;
wire ex_read_cache_busy;
genvar i;
// ======================================
// Address to use for cache access
// ======================================
// If currently stalled then the address for the next
// cycle will be the same as it is in the current cycle
//
assign address = i_core_stall ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
i_address_nxt[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] ;
// ======================================
// Outputs
// ======================================
assign o_read_data = wb_read_buf_hit ? wb_read_buf_data :
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd0 ? hit_rdata [31:0] :
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd1 ? hit_rdata [63:32] :
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd2 ? hit_rdata [95:64] :
hit_rdata [127:96] ;
// Don't allow the cache to stall the wb i/f for an exclusive access
// The cache needs a couple of cycles to flush a potential copy of the exclusive
// address, but the wb can do the access in parallel. So there is no
// stall in the state CS_EX_DELETE, even though the cache is out of action.
// This works fine as long as the wb is stalling the core
assign o_stall = read_stall || write_stall || cache_busy_stall || ex_read_cache_busy;
assign o_wb_req = (( read_miss || write_miss ) && c_state == CS_IDLE ) ||
c_state == CS_WRITE_HIT1;
// ======================================
// Cache State Machine
// ======================================
// Little State Machine to Flush Tag RAMS
always @ ( posedge i_clk )
if ( i_cache_flush )
begin
c_state <= C_INIT;
source_sel <= 1'd1 << C_INIT;
init_count <= 'd0;
`ifdef A23_CACHE_DEBUG
`TB_DEBUG_MESSAGE
$display("Cache Flush");
`endif
end
else
case ( c_state )
CS_INIT :
if ( init_count < CACHE_LINES [CACHE_ADDR_WIDTH:0] )
begin
init_count <= init_count + 1'd1;
source_sel <= 1'd1 << C_INIT;
end
else
begin
source_sel <= 1'd1 << C_CORE;
c_state <= CS_TURN_AROUND;
end
CS_IDLE :
begin
source_sel <= 1'd1 << C_CORE;
if ( ex_read_hit || ex_read_hit_r )
begin
select_way <= data_hit_way | ex_read_hit_way;
c_state <= CS_EX_DELETE;
source_sel <= 1'd1 << C_INVA;
end
else if ( read_miss )
begin
// wb read request asserted, wait for ack
if ( !i_wb_stall )
c_state <= CS_FILL1;
end
else if ( write_hit )
c_state <= CS_WRITE_HIT1;
end
CS_FILL1 :
begin
// wb read request asserted, wait for ack
if ( !i_wb_stall )
c_state <= CS_FILL2;
end
CS_FILL2 :
// first read of burst of 4
// wb read request asserted, wait for ack
if ( !i_wb_stall )
c_state <= CS_FILL3;
CS_FILL3 :
// second read of burst of 4
// wb read request asserted, wait for ack
if ( !i_wb_stall )
c_state <= CS_FILL4;
CS_FILL4 :
// third read of burst of 4
// wb read request asserted, wait for ack
if ( !i_wb_stall )
begin
c_state <= CS_FILL_COMPLETE;
source_sel <= 1'd1 << C_FILL;
// Pick a way to write the cache update into
// Either pick one of the invalid caches, or if all are valid, then pick
// one randomly
select_way <= next_way;
random_num <= {random_num[2], random_num[1], random_num[0],
random_num[3]^random_num[2]};
end
// Write the read fetch data in this cycle
CS_FILL_COMPLETE :
// fourth read of burst of 4
// wb read request asserted, wait for ack
if ( !i_wb_stall )
begin
// Back to normal cache operations, but
// use physical address for first read as
// address moved before the stall was asserted for the read_miss
// However don't use it if its a non-cached address!
source_sel <= 1'd1 << C_CORE;
c_state <= CS_TURN_AROUND;
end
// Ignore the tag read data in this cycle
// Wait 1 cycle to pre-read the cache and return to normal operation
CS_TURN_AROUND :
begin
c_state <= CS_IDLE;
end
// Flush the entry matching an exclusive access
CS_EX_DELETE:
begin
`ifdef A23_CACHE_DEBUG
`TB_DEBUG_MESSAGE
$display("Cache deleted Locked entry");
`endif
c_state <= CS_TURN_AROUND;
source_sel <= 1'd1 << C_CORE;
end
CS_WRITE_HIT1:
begin
// wait for an ack on the wb bus to complete the write
if ( !i_wb_stall )
c_state <= CS_IDLE;
end
endcase
// ======================================
// Capture WB Block Read - burst of 4 words
// ======================================
always @ ( posedge i_clk )
if ( !i_wb_stall )
wb_rdata_burst <= {i_wb_read_data, wb_rdata_burst[127:32]};
// ======================================
// WB Read Buffer
// ======================================
always @ ( posedge i_clk )
begin
if ( c_state == CS_FILL1 || c_state == CS_FILL2 ||
c_state == CS_FILL3 || c_state == CS_FILL4 )
begin
if ( !i_wb_stall )
begin
wb_read_buf_valid <= 1'd1;
wb_read_buf_address <= i_wb_address;
wb_read_buf_data <= i_wb_read_data;
end
end
else
wb_read_buf_valid <= 1'd0;
end
// ======================================
// Miss Address
// ======================================
always @ ( posedge i_clk )
if ( o_wb_req )
miss_address <= i_address;
// ======================================
// Remember Read-Modify-Write Hit
// ======================================
assign ex_read_hit_clear = c_state == CS_EX_DELETE;
always @ ( posedge i_clk )
if ( ex_read_hit_clear )
begin
ex_read_hit_r <= 1'd0;
ex_read_hit_way <= 'd0;
end
else if ( ex_read_hit )
begin
`ifdef A23_CACHE_DEBUG
`TB_DEBUG_MESSAGE
$display ("Exclusive access cache hit address 0x%08h", i_address);
`endif
ex_read_hit_r <= 1'd1;
ex_read_hit_way <= data_hit_way;
end
else if ( c_state == CS_FILL_COMPLETE && ex_read_hit_r )
ex_read_hit_way <= select_way;
always @ (posedge i_clk)
if ( ex_read_hit )
ex_read_address <= i_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB];
assign tag_address = source_sel[C_FILL] ? miss_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
source_sel[C_INVA] ? ex_read_address :
source_sel[C_INIT] ? init_count[CACHE_ADDR_WIDTH-1:0] :
source_sel[C_CORE] ? address :
{CACHE_ADDR_WIDTH{1'd0}} ;
assign data_address = write_hit ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
source_sel[C_FILL] ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
source_sel[C_CORE] ? address :
{CACHE_ADDR_WIDTH{1'd0}} ;
assign tag_wdata = source_sel[C_FILL] ? {1'd1, miss_address[31:TAG_ADDR32_LSB]} :
{TAG_WIDTH{1'd0}} ;
// Data comes in off the WB bus in wrap4 with the missed data word first
assign data_wdata = write_hit && c_state == CS_IDLE ? write_hit_wdata : read_miss_wdata;
assign read_miss_wdata = miss_address[3:2] == 2'd0 ? wb_rdata_burst :
miss_address[3:2] == 2'd1 ? { wb_rdata_burst[95:0], wb_rdata_burst[127:96] }:
miss_address[3:2] == 2'd2 ? { wb_rdata_burst[63:0], wb_rdata_burst[127:64] }:
{ wb_rdata_burst[31:0], wb_rdata_burst[127:32] };
assign write_hit_wdata = i_address[3:2] == 2'd0 ? {hit_rdata[127:32], write_data_word } :
i_address[3:2] == 2'd1 ? {hit_rdata[127:64], write_data_word, hit_rdata[31:0] } :
i_address[3:2] == 2'd2 ? {hit_rdata[127:96], write_data_word, hit_rdata[63:0] } :
{ write_data_word, hit_rdata[95:0] } ;
// Use Byte Enables
assign write_data_word = i_byte_enable == 4'b0001 ? { o_read_data[31: 8], i_write_data[ 7: 0] } :
i_byte_enable == 4'b0010 ? { o_read_data[31:16], i_write_data[15: 8], o_read_data[ 7:0]} :
i_byte_enable == 4'b0100 ? { o_read_data[31:24], i_write_data[23:16], o_read_data[15:0]} :
i_byte_enable == 4'b1000 ? { i_write_data[31:24], o_read_data[23:0]} :
i_byte_enable == 4'b0011 ? { o_read_data[31:16], i_write_data[15: 0] } :
i_byte_enable == 4'b1100 ? { i_write_data[31:16], o_read_data[15:0]} :
i_write_data ;
assign tag_wenable = source_sel[C_INVA] ? 1'd1 :
source_sel[C_FILL] ? 1'd1 :
source_sel[C_INIT] ? 1'd1 :
source_sel[C_CORE] ? 1'd0 :
1'd0 ;
assign enable = i_select && i_cache_enable;
assign exclusive_access = i_exclusive && i_cache_enable;
// the wb read buffer returns data directly from the wb bus to the
// core during a read miss operation
assign wb_read_buf_hit = enable && wb_read_buf_address == i_address && wb_read_buf_valid;
assign hit = |data_hit_way;
assign write_hit = enable && i_write_enable && hit;
assign write_miss = enable && i_write_enable && !hit && c_state != CS_WRITE_HIT1;
assign read_miss = enable && !i_write_enable && !(hit || wb_read_buf_hit);
// Exclusive read hit
assign ex_read_hit = exclusive_access && !i_write_enable && (hit || wb_read_buf_hit);
// Added to fix rare swap bug which occurs when the cache starts
// a fill just as the swap instruction starts to execute. The cache
// fails to check for a read hit on the swap read cycle.
// This signal stalls the core in that case until after the
// fill has completed.
assign ex_read_cache_busy = exclusive_access && !i_write_enable && c_state != CS_IDLE;
// Need to stall for a write miss to wait for the current wb
// read miss access to complete. Also for a write hit, need
// to stall for 1 cycle while the data cache is being written to
assign write_stall = ( write_hit && c_state != CS_WRITE_HIT1 ) ||
( write_miss && ( c_state != CS_IDLE ) ) ||
i_wb_stall ;
assign read_stall = read_miss;
// Core may or may not be trying to access cache memory during
// this phase of the read fetch. It could be doing e.g. a wb access
assign cache_busy_stall = ((c_state == CS_TURN_AROUND || c_state == CS_FILL1) && enable) ||
c_state == CS_INIT;
// ======================================
// Instantiate RAMS
// ======================================
generate
for ( i=0; i<WAYS;i=i+1 ) begin : rams
// Tag RAMs
`ifdef XILINX_SPARTAN6_FPGA
xs6_sram_256x21_line_en
`endif
`ifdef XILINX_VIRTEX6_FPGA
xv6_sram_256x21_line_en
`endif
`ifndef XILINX_FPGA
generic_sram_line_en
`endif
#(
.DATA_WIDTH ( TAG_WIDTH ),
.INITIALIZE_TO_ZERO ( 1 ),
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH ))
u_tag (
.i_clk ( i_clk ),
.i_write_data ( tag_wdata ),
.i_write_enable ( tag_wenable_way[i] ),
.i_address ( tag_address ),
.o_read_data ( tag_rdata_way[i] )
);
// Data RAMs
// `ifdef XILINX_SPARTAN6_FPGA
xs6_sram_256x128_byte_en
// `endif
// `ifdef XILINX_VIRTEX6_FPGA
// xv6_sram_256x128_byte_en
// `endif
// `ifndef XILINX_FPGA
// generic_sram_byte_en
// `endif
#(
.DATA_WIDTH ( CACHE_LINE_WIDTH) ,
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH) )
u_data (
.i_clk ( i_clk ),
.i_write_data ( data_wdata ),
.i_write_enable ( data_wenable_way[i] ),
.i_address ( data_address ),
.i_byte_enable ( {CACHE_LINE_WIDTH/8{1'd1}} ),
.o_read_data ( data_rdata_way[i] )
);
// Per tag-ram write-enable
assign tag_wenable_way[i] = tag_wenable && ( select_way[i] || source_sel[C_INIT] );
// Per data-ram write-enable
assign data_wenable_way[i] = (source_sel[C_FILL] && select_way[i]) ||
(write_hit && data_hit_way[i] && c_state == CS_IDLE);
// Per data-ram hit flag
assign data_hit_way[i] = tag_rdata_way[i][TAG_WIDTH-1] &&
tag_rdata_way[i][TAG_ADDR_WIDTH-1:0] == i_address[31:TAG_ADDR32_LSB] &&
c_state == CS_IDLE;
end
endgenerate
// ======================================
// Register Valid Bits
// ======================================
generate
if ( WAYS == 2 ) begin : valid_bits_2ways
always @ ( posedge i_clk )
if ( c_state == CS_IDLE )
valid_bits_r <= {tag_rdata_way[1][TAG_WIDTH-1],
tag_rdata_way[0][TAG_WIDTH-1]};
end
else if ( WAYS == 3 ) begin : valid_bits_3ways
always @ ( posedge i_clk )
if ( c_state == CS_IDLE )
valid_bits_r <= {tag_rdata_way[2][TAG_WIDTH-1],
tag_rdata_way[1][TAG_WIDTH-1],
tag_rdata_way[0][TAG_WIDTH-1]};
end
else if ( WAYS == 4 ) begin : valid_bits_4ways
always @ ( posedge i_clk )
if ( c_state == CS_IDLE )
valid_bits_r <= {tag_rdata_way[3][TAG_WIDTH-1],
tag_rdata_way[2][TAG_WIDTH-1],
tag_rdata_way[1][TAG_WIDTH-1],
tag_rdata_way[0][TAG_WIDTH-1]};
end
else begin : valid_bits_8ways
always @ ( posedge i_clk )
if ( c_state == CS_IDLE )
valid_bits_r <= {tag_rdata_way[7][TAG_WIDTH-1],
tag_rdata_way[6][TAG_WIDTH-1],
tag_rdata_way[5][TAG_WIDTH-1],
tag_rdata_way[4][TAG_WIDTH-1],
tag_rdata_way[3][TAG_WIDTH-1],
tag_rdata_way[2][TAG_WIDTH-1],
tag_rdata_way[1][TAG_WIDTH-1],
tag_rdata_way[0][TAG_WIDTH-1]};
end
endgenerate
// ======================================
// Select read hit data
// ======================================
generate
if ( WAYS == 2 ) begin : read_data_2ways
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
data_hit_way[1] ? data_rdata_way[1] :
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
end
else if ( WAYS == 3 ) begin : read_data_3ways
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
data_hit_way[1] ? data_rdata_way[1] :
data_hit_way[2] ? data_rdata_way[2] :
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
end
else if ( WAYS == 4 ) begin : read_data_4ways
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
data_hit_way[1] ? data_rdata_way[1] :
data_hit_way[2] ? data_rdata_way[2] :
data_hit_way[3] ? data_rdata_way[3] :
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
end
else begin : read_data_8ways
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
data_hit_way[1] ? data_rdata_way[1] :
data_hit_way[2] ? data_rdata_way[2] :
data_hit_way[3] ? data_rdata_way[3] :
data_hit_way[4] ? data_rdata_way[4] :
data_hit_way[5] ? data_rdata_way[5] :
data_hit_way[6] ? data_rdata_way[6] :
data_hit_way[7] ? data_rdata_way[7] :
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
end
endgenerate
// ======================================
// Function to select the way to use
// for fills
// ======================================
generate
if ( WAYS == 2 ) begin : pick_way_2ways
assign next_way = pick_way ( valid_bits_r, random_num );
function [WAYS-1:0] pick_way;
input [WAYS-1:0] valid_bits;
input [3:0] random_num;
begin
if ( valid_bits[0] == 1'd0 )
// way 0 not occupied so use it
pick_way = 2'b01;
else if ( valid_bits[1] == 1'd0 )
// way 1 not occupied so use it
pick_way = 2'b10;
else
begin
// All ways occupied so pick one randomly
case (random_num[3:1])
3'd0, 3'd3,
3'd5, 3'd6: pick_way = 2'b10;
default: pick_way = 2'b01;
endcase
end
end
endfunction
end
else if ( WAYS == 3 ) begin : pick_way_3ways
assign next_way = pick_way ( valid_bits_r, random_num );
function [WAYS-1:0] pick_way;
input [WAYS-1:0] valid_bits;
input [3:0] random_num;
begin
if ( valid_bits[0] == 1'd0 )
// way 0 not occupied so use it
pick_way = 3'b001;
else if ( valid_bits[1] == 1'd0 )
// way 1 not occupied so use it
pick_way = 3'b010;
else if ( valid_bits[2] == 1'd0 )
// way 2 not occupied so use it
pick_way = 3'b100;
else
begin
// All ways occupied so pick one randomly
case (random_num[3:1])
3'd0, 3'd1, 3'd2: pick_way = 3'b010;
3'd2, 3'd3, 3'd4: pick_way = 3'b100;
default: pick_way = 3'b001;
endcase
end
end
endfunction
end
else if ( WAYS == 4 ) begin : pick_way_4ways
assign next_way = pick_way ( valid_bits_r, random_num );
function [WAYS-1:0] pick_way;
input [WAYS-1:0] valid_bits;
input [3:0] random_num;
begin
if ( valid_bits[0] == 1'd0 )
// way 0 not occupied so use it
pick_way = 4'b0001;
else if ( valid_bits[1] == 1'd0 )
// way 1 not occupied so use it
pick_way = 4'b0010;
else if ( valid_bits[2] == 1'd0 )
// way 2 not occupied so use it
pick_way = 4'b0100;
else if ( valid_bits[3] == 1'd0 )
// way 3 not occupied so use it
pick_way = 4'b1000;
else
begin
// All ways occupied so pick one randomly
case (random_num[3:1])
3'd0, 3'd1: pick_way = 4'b0100;
3'd2, 3'd3: pick_way = 4'b1000;
3'd4, 3'd5: pick_way = 4'b0001;
default: pick_way = 4'b0010;
endcase
end
end
endfunction
end
else begin : pick_way_8ways
assign next_way = pick_way ( valid_bits_r, random_num );
function [WAYS-1:0] pick_way;
input [WAYS-1:0] valid_bits;
input [3:0] random_num;
begin
if ( valid_bits[0] == 1'd0 )
// way 0 not occupied so use it
pick_way = 8'b00000001;
else if ( valid_bits[1] == 1'd0 )
// way 1 not occupied so use it
pick_way = 8'b00000010;
else if ( valid_bits[2] == 1'd0 )
// way 2 not occupied so use it
pick_way = 8'b00000100;
else if ( valid_bits[3] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b00001000;
else if ( valid_bits[4] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b00010000;
else if ( valid_bits[5] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b00100000;
else if ( valid_bits[6] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b01000000;
else if ( valid_bits[7] == 1'd0 )
// way 3 not occupied so use it
pick_way = 8'b10000000;
else
begin
// All ways occupied so pick one randomly
case (random_num[3:1])
3'd0: pick_way = 8'b00010000;
3'd1: pick_way = 8'b00100000;
3'd2: pick_way = 8'b01000000;
3'd3: pick_way = 8'b10000000;
3'd4: pick_way = 8'b00000001;
3'd5: pick_way = 8'b00000010;
3'd6: pick_way = 8'b00000100;
default: pick_way = 8'b00001000;
endcase
end
end
endfunction
end
endgenerate
// ========================================================
// Debug WB bus - not synthesizable
// ========================================================
//synopsys translate_off
wire [(6*8)-1:0] xSOURCE_SEL;
wire [(20*8)-1:0] xC_STATE;
assign xSOURCE_SEL = source_sel[C_CORE] ? "C_CORE" :
source_sel[C_INIT] ? "C_INIT" :
source_sel[C_FILL] ? "C_FILL" :
source_sel[C_INVA] ? "C_INVA" :
"UNKNON" ;
assign xC_STATE = c_state == CS_INIT ? "CS_INIT" :
c_state == CS_IDLE ? "CS_IDLE" :
c_state == CS_FILL1 ? "CS_FILL1" :
c_state == CS_FILL2 ? "CS_FILL2" :
c_state == CS_FILL3 ? "CS_FILL3" :
c_state == CS_FILL4 ? "CS_FILL4" :
c_state == CS_FILL_COMPLETE ? "CS_FILL_COMPLETE" :
c_state == CS_EX_DELETE ? "CS_EX_DELETE" :
c_state == CS_TURN_AROUND ? "CS_TURN_AROUND" :
c_state == CS_WRITE_HIT1 ? "CS_WRITE_HIT1" :
"UNKNOWN" ;
generate
if ( WAYS == 2 ) begin : check_hit_2ways
always @( posedge i_clk )
if ( (data_hit_way[0] + data_hit_way[1] ) > 4'd1 )
begin
`TB_ERROR_MESSAGE
$display("Hit in more than one cache ways!");
end
end
else if ( WAYS == 3 ) begin : check_hit_3ways
always @( posedge i_clk )
if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] ) > 4'd1 )
begin
`TB_ERROR_MESSAGE
$display("Hit in more than one cache ways!");
end
end
else if ( WAYS == 4 ) begin : check_hit_4ways
always @( posedge i_clk )
if ( (data_hit_way[0] + data_hit_way[1] +
data_hit_way[2] + data_hit_way[3] ) > 4'd1 )
begin
`TB_ERROR_MESSAGE
$display("Hit in more than one cache ways!");
end
end
else if ( WAYS == 8 ) begin : check_hit_8ways
always @( posedge i_clk )
if ( (data_hit_way[0] + data_hit_way[1] +
data_hit_way[2] + data_hit_way[3] +
data_hit_way[4] + data_hit_way[5] +
data_hit_way[6] + data_hit_way[7] ) > 4'd1 )
begin
`TB_ERROR_MESSAGE
$display("Hit in more than one cache ways!");
end
end
else begin : check_hit_nways
initial
begin
`TB_ERROR_MESSAGE
$display("Unsupported number of ways %0d", WAYS);
$display("Set A23_CACHE_WAYS in a23_config_defines.v to either 2,3,4 or 8");
end
end
endgenerate
//synopsys translate_on
endmodule