forked from hvy/chainer-infogan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
135 lines (104 loc) · 5.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import argparse
import numpy as np
from chainer import datasets, cuda, serializers, Variable
from chainer import optimizers as O
from chainer import functions as F
from models import Generator, Discriminator
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=1)
parser.add_argument('--n-z', type=int, default=62)
parser.add_argument('--n-categorical', type=int, default=10)
parser.add_argument('--n-continuous', type=int, default=2)
parser.add_argument('--max-epochs', type=int, default=100)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--out-generator-filename', type=str, default='./generator.model')
return parser.parse_args()
def rnd_categorical(n, n_categorical):
indices = np.random.randint(n_categorical, size=n)
one_hot = np.zeros((n, n_categorical))
one_hot[np.arange(n), indices] = 1
return one_hot, indices
def rnd_continuous(n, n_continuous, mu=0, std=1):
return np.random.normal(mu, std, size=(n, n_continuous))
if __name__ == '__main__':
args = parse_args()
gpu = args.gpu
n_z = args.n_z
n_categorical = args.n_categorical
n_continuous = args.n_continuous
max_epochs = args.max_epochs
batch_size = args.batch_size
out_generator_filename = args.out_generator_filename
# Prepare the training data
train, _ = datasets.get_mnist(withlabel=False, ndim=2)
train_size = train.shape[0]
im_shape = train.shape[1:]
# Prepare the models
generator = Generator(n_z + n_categorical + n_continuous, im_shape)
generator_optimizer = O.Adam(alpha=1e-3, beta1=0.5)
generator_optimizer.setup(generator)
discriminator = Discriminator(im_shape, n_categorical, n_continuous)
discriminator_optimizer = O.Adam(alpha=2e-4, beta1=0.5)
discriminator_optimizer.setup(discriminator)
if gpu >= 0:
cuda.check_cuda_available()
cuda.get_device(gpu).use()
generator.to_gpu()
discriminator.to_gpu()
xp = cuda.cupy
else:
xp = np
for epoch in range(max_epochs):
generator_epoch_loss = np.float32(0)
discriminator_epoch_loss = np.float32(0)
for i in range(0, train_size, batch_size):
# Sample noise z
zs = xp.random.uniform(-1, 1, (batch_size, n_z)).astype(xp.float32)
# Sample a category encoded as a one-hot vector to hopefully learn a digit
c_categorical, categories = rnd_categorical(batch_size, n_categorical)
c_categorical = xp.asarray(c_categorical, dtype=xp.float32)
categories = xp.asarray(categories, dtype=xp.int32)
# Sample continuous codes to learn rotation, thickness, etc.
c_continuous = xp.asarray(rnd_continuous(batch_size, n_continuous), dtype=xp.float32)
zc = xp.concatenate((zs, c_categorical, c_continuous), axis=1)
# Forward
x_fake = generator(zc)
y_fake, mi = discriminator(x_fake)
x_real = xp.zeros((batch_size, *im_shape), dtype=xp.float32)
for xi in range(len(x_real)):
x_real[xi] = xp.array(train[np.random.randint(train_size)])
x_real = xp.expand_dims(x_real, 1)
y_real, _ = discriminator(x_real)
# Losses
generator_loss = F.softmax_cross_entropy(y_fake, xp.ones(batch_size, dtype=xp.int32))
discriminator_loss = F.softmax_cross_entropy(y_fake, xp.zeros(batch_size, dtype=xp.int32))
discriminator_loss += F.softmax_cross_entropy(y_real, xp.ones(batch_size, dtype=xp.int32))
# Mutual Information loss
mi_categorical, mi_continuous_mean = F.split_axis(mi, [n_categorical], 1)
# Categorical loss
categorical_loss = F.softmax_cross_entropy(mi_categorical, categories, use_cudnn=False)
# Continuous loss - Fix standard deviation to 1, i.e. log variance is 0
mi_continuous_ln_var = xp.empty_like(mi_continuous_mean.data, dtype=xp.float32)
mi_continuous_ln_var.fill(1)
# mi_continuous_ln_var.fill(1e-6)
continuous_loss = F.gaussian_nll(mi_continuous_mean, Variable(c_continuous), Variable(mi_continuous_ln_var))
continuous_loss /= batch_size
generator_loss += categorical_loss
generator_loss += continuous_loss
# Backprop
generator_optimizer.zero_grads()
generator_loss.backward()
generator_optimizer.update()
discriminator_optimizer.zero_grads()
discriminator_loss.backward()
discriminator_optimizer.update()
generator_epoch_loss += generator_loss.data
discriminator_epoch_loss += discriminator_loss.data
generator_avg_loss = generator_epoch_loss / train_size
discriminator_avg_loss = discriminator_epoch_loss / train_size
print('Epoch {} Loss Generator: {} Loss Discriminator: {}'
.format(epoch + 1, generator_avg_loss, discriminator_avg_loss))
print('Saving model', out_generator_filename)
serializers.save_hdf5(out_generator_filename, generator)
print('Finished training')