-
Notifications
You must be signed in to change notification settings - Fork 7
/
dagger_training_thread.py
312 lines (231 loc) · 10.6 KB
/
dagger_training_thread.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import random
import time
import sys
from scipy.spatial.distance import cosine
from utils.accum_trainer import AccumTrainer
from utils.ops import sample_action
from scene_loader import THORDiscreteEnvironment as Environment
from dagger_policy_generators import SmashNet, ShortestPathOracle
from dagger_constants import ACTION_SIZE, GAMMA, LOCAL_T_MAX, ENTROPY_BETA, VERBOSE, VALID_TASK_LIST, NUM_VAL_EPISODES, VALIDATE, VALIDATE_FREQUENCY, SUCCESS_CUTOFF, MAX_VALID_STEPS
class SmashNetTrainingThread(object):
def __init__(self,
thread_index,
global_network,
initial_learning_rate,
learning_rate_input,
grad_applier,
max_global_time_step,
device,
initial_diffidence_rate_seed,
mode="train",
network_scope="network",
scene_scope="scene",
task_scope="task",
encourage_symmetry=False):
self.thread_index = thread_index
self.learning_rate_input = learning_rate_input
self.max_global_time_step = max_global_time_step
self.network_scope = network_scope
self.scene_scope = scene_scope
self.task_scope = task_scope
self.scopes = [network_scope, scene_scope, task_scope] # ["thread-n", "scene", "target"]
self.local_network = SmashNet(
action_size=ACTION_SIZE,
device=device,
network_scope=network_scope,
scene_scopes=[scene_scope])
self.local_network.prepare_loss(self.scopes)
if mode is "train":
self.trainer = AccumTrainer(device)
self.trainer.prepare_minimize(self.local_network.loss,
self.local_network.get_vars())
self.accum_gradients = self.trainer.accumulate_gradients()
self.reset_gradients = self.trainer.reset_gradients()
accum_grad_names = [self._local_var_name(x) for x in self.trainer.get_accum_grad_list()]
global_net_vars = [x for x in global_network.get_vars() if self._get_accum_grad_name(x) in accum_grad_names]
self.apply_gradients = grad_applier.apply_gradients( global_net_vars, self.trainer.get_accum_grad_list() )
self.sync = self.local_network.sync_from(global_network)
self.env = None
self.local_t = 0
self.initial_learning_rate = initial_learning_rate
# self.episode_reward = 0
self.episode_length = 0
# self.episode_max_q = -np.inf
self.episode_pi_sim = 0
self.episode_loss = 0
self.initial_diffidence_rate_seed = initial_diffidence_rate_seed
self.oracle = None
self.mode = mode
self.encourage_symmetry = encourage_symmetry
def _local_var_name(self, var):
return '/'.join(var.name.split('/')[1:])
def _get_accum_grad_name(self, var):
return self._local_var_name(var).replace(':','_') + '_accum_grad:0'
def _anneal_rate(self, init_rate, global_time_step):
time_step_to_go = max(self.max_global_time_step - global_time_step, 0.0)
rate = init_rate * time_step_to_go / self.max_global_time_step
return rate
def _anneal_learning_rate(self, global_time_step):
learning_rate = self._anneal_rate(self.initial_learning_rate, global_time_step)
return learning_rate
def _inverse_sigmoid_decay_rate(self, init_rate_seed, global_time_step):
rate = init_rate_seed*np.exp(-global_time_step/init_rate_seed)
rate = rate / (1. + rate)
return rate
def _anneal_diffidence_rate(self, global_time_step):
if self.initial_diffidence_rate_seed == 0: return 0
else: return self._inverse_sigmoid_decay_rate(self.initial_diffidence_rate_seed, global_time_step)
# TODO: check
def choose_action(self, smashnet_pi_values, oracle_pi_values, confidence_rate):
r = random.random()
if r < confidence_rate: pi_values = oracle_pi_values
else: pi_values = smashnet_pi_values
r = random.random() * np.sum(pi_values)
values = np.cumsum(pi_values)
for i in range(len(values)):
if values[i] >= r: return i
def _record_score(self, sess, writer, summary_op, placeholders, values, global_t):
feed_dict = {}
for k in placeholders:
feed_dict[placeholders[k]] = values[k]
summary_str = sess.run(summary_op, feed_dict=feed_dict)
writer.add_summary(summary_str, global_t)
# writer.flush()
def _evaluate(self, sess, list_of_tasks, num_episodes, max_steps, success_cutoff):
scene_scopes = list_of_tasks.keys()
results = {}
for scene_scope in scene_scopes:
for task_scope in list_of_tasks[scene_scope]:
env = Environment({
'scene_name': scene_scope,
'terminal_state_id': int(task_scope)
})
ep_lengths = []
ep_collisions = []
oracle_lengths = []
ep_successes = []
scopes = [self.network_scope, scene_scope, task_scope]
for i_episode in range(num_episodes):
env.reset()
oracle_lengths.append(env.shortest_path_distances[env.current_state_id][env.terminal_state_id])
terminal = False
ep_length = 0
ep_collision = 0
while not terminal:
pi_values = self.local_network.run_policy(sess, env.s_t, env.target, scopes)
action = sample_action(pi_values)
env.step(action)
env.update()
terminal = env.terminal
if ep_length == max_steps: break
if env.collided: ep_collision += 1
ep_length += 1
ep_lengths.append(ep_length)
ep_collisions.append(ep_collision)
ep_successes.append(int(ep_length < success_cutoff))
results[scene_scope + task_scope] = [np.mean(ep_lengths), np.mean(ep_collisions), np.mean(oracle_lengths), np.mean(ep_successes)]
return results
def _flip_policy(self, policy):
flipped_policy = np.array([policy[3],
policy[2],
policy[1],
policy[0]])
return flipped_policy
def process(self, sess, global_t, summary_writer, summary_op, summary_placeholders):
if self.env is None:
# lazy evaluation
time.sleep(self.thread_index*1.0)
self.env = Environment({
'scene_name': self.scene_scope,
'terminal_state_id': int(self.task_scope)
})
self.env.reset()
self.oracle = ShortestPathOracle(self.env, ACTION_SIZE)
states = []
targets = []
oracle_pis = []
terminal_end = False
if self.mode is "train":
# reset accumulated gradients
sess.run( self.reset_gradients )
# copy weights from shared to local
sess.run( self.sync )
start_local_t = self.local_t
# t_max times loop (5 steps)
for i in range(LOCAL_T_MAX):
flipped_run = self.encourage_symmetry and np.random.random() > 0.5
if flipped_run: s_t = self.env.target; g = self.env.s_t
else: s_t = self.env.s_t; g = self.env.target
smashnet_pi = self.local_network.run_policy(sess, s_t, g, self.scopes)
if flipped_run: smashnet_pi = self._flip_policy(smashnet_pi)
oracle_pi = self.oracle.run_policy(self.env.current_state_id)
diffidence_rate = self._anneal_diffidence_rate(global_t)
action = self.choose_action(smashnet_pi, oracle_pi, diffidence_rate)
states.append(s_t)
targets.append(g)
if flipped_run: oracle_pis.append(self._flip_policy(oracle_pi))
else: oracle_pis.append(oracle_pi)
# if VERBOSE and global_t % 10000 == 0:
# print("Thread %d" % (self.thread_index))
# sys.stdout.write("SmashNet Pi = {}, Oracle Pi = {}\n".format(["{:0.2f}".format(i) for i in smashnet_pi], ["{:0.2f}".format(i) for i in oracle_pi]))
if VALIDATE and global_t % VALIDATE_FREQUENCY == 0 and global_t > 0 and self.thread_index == 0:
results = self._evaluate(sess, list_of_tasks=VALID_TASK_LIST, num_episodes=NUM_VAL_EPISODES, max_steps=MAX_VALID_STEPS, success_cutoff=SUCCESS_CUTOFF)
print("Thread %d" % (self.thread_index))
print("Validation results: %s" % (results))
self.env.step(action)
is_terminal = self.env.terminal or self.episode_length > 5e3
if self.mode is "val" and self.episode_length > 1e3:
is_terminal = True
self.episode_length += 1
self.episode_pi_sim += 1. - cosine(smashnet_pi, oracle_pi)
self.local_t += 1
# s_t1 -> s_t
self.env.update()
if is_terminal:
terminal_end = True
if self.mode is "val":
sess.run(self.sync)
sys.stdout.write("time %d | thread #%d | scene %s | target %s | episode length = %d\n" % (global_t, self.thread_index, self.scene_scope, self.task_scope, self.episode_length))
summary_values = {
"episode_length_input": float(self.episode_length),
"episode_pi_sim_input": self.episode_pi_sim / float(self.episode_length),
"episode_loss_input": float(self.episode_loss)
}
self._record_score(sess, summary_writer, summary_op, summary_placeholders,
summary_values, global_t)
self.episode_length = 0
self.episode_pi_sim = 0
self.episode_loss = 0
self.env.reset()
break
if self.mode is "train":
states.reverse()
oracle_pis.reverse()
batch_si = []
batch_ti = []
batch_opi = []
# compute and accmulate gradients
for(si, ti, opi) in zip(states, targets, oracle_pis):
batch_si.append(si)
batch_ti.append(ti)
batch_opi.append(opi)
sess.run( self.accum_gradients,
feed_dict = {
self.local_network.s: batch_si,
self.local_network.t: batch_ti,
self.local_network.opi: batch_opi} )
self.episode_loss += sum(sess.run(self.local_network.loss,
feed_dict={
self.local_network.s: batch_si,
self.local_network.t: batch_ti,
self.local_network.opi: batch_opi}))
cur_learning_rate = self._anneal_learning_rate(global_t)
sess.run( self.apply_gradients, feed_dict = { self.learning_rate_input: cur_learning_rate } )
# if VERBOSE and (self.thread_index == 0) and (self.local_t % 100) == 0:
# sys.stdout.write("Local timestep %d\n" % self.local_t)
# return advanced local step size
diff_local_t = self.local_t - start_local_t
return diff_local_t