-
Notifications
You must be signed in to change notification settings - Fork 180
/
dummy_config.yaml
48 lines (48 loc) · 1.43 KB
/
dummy_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
algorithm:
class_name: PPO
# training parameters
# -- value function
value_loss_coef: 1.0
clip_param: 0.2
use_clipped_value_loss: true
# -- surrogate loss
desired_kl: 0.01
entropy_coef: 0.01
gamma: 0.99
lam: 0.95
max_grad_norm: 1.0
# -- training
learning_rate: 0.001
num_learning_epochs: 5
num_mini_batches: 4 # mini batch size = num_envs * num_steps / num_mini_batches
schedule: adaptive # adaptive, fixed
policy:
class_name: ActorCritic
# for MLP i.e. `ActorCritic`
activation: elu
actor_hidden_dims: [128, 128, 128]
critic_hidden_dims: [128, 128, 128]
init_noise_std: 1.0
# only needed for `ActorCriticRecurrent`
# rnn_type: 'lstm'
# rnn_hidden_size: 512
# rnn_num_layers: 1
runner:
num_steps_per_env: 24 # number of steps per environment per iteration
max_iterations: 1500 # number of policy updates
empirical_normalization: false
# -- logging parameters
save_interval: 50 # check for potential saves every `save_interval` iterations
experiment_name: walking_experiment
run_name: ""
# -- logging writer
logger: tensorboard # tensorboard, neptune, wandb
neptune_project: legged_gym
wandb_project: legged_gym
# -- load and resuming
resume: false
load_run: -1 # -1 means load latest run
resume_path: null # updated from load_run and checkpoint
checkpoint: -1 # -1 means load latest checkpoint
runner_class_name: OnPolicyRunner
seed: 1