-
Notifications
You must be signed in to change notification settings - Fork 0
/
connect.py
146 lines (118 loc) · 5.1 KB
/
connect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import numpy as np
import os
import sys
import tabulate
import torch
import torch.nn.functional as F
import data
import models
import utils
def main(args):
os.makedirs(args.dir, exist_ok=True)
with open(os.path.join(args.dir, 'chain.sh'), 'w') as f:
f.write(' '.join(sys.argv))
f.write('\n')
torch.backends.cudnn.benchmark = True
loaders, num_classes = data.loaders(
args.dataset,
args.data_path,
args.batch_size,
args.num_workers,
args.transform,
args.use_test,
shuffle_train=False
)
architecture = getattr(models, args.model)
base_model = architecture.base(num_classes, **architecture.kwargs)
base_model.cuda()
criterion = F.cross_entropy
regularizer = utils.l2_regularizer(args.wd)
def get_weights(model):
return np.concatenate([p.data.cpu().numpy().ravel() for p in model.parameters()])
T = (args.num_points - 1) * len(args.ckpt - 1) + 1
ts = np.linspace(0.0, len(args.ckpt) - 1, T)
tr_loss = np.zeros(T)
tr_nll = np.zeros(T)
tr_acc = np.zeros(T)
te_loss = np.zeros(T)
te_nll = np.zeros(T)
te_acc = np.zeros(T)
tr_err = np.zeros(T)
te_err = np.zeros(T)
columns = ['t', 'Train loss', 'Train nll', 'Train error (%)', 'Test nll', 'Test error (%)']
alphas = np.linspace(0.0, 1.0, args.num_points)
for path in args.ckpt:
print(path)
step = 0
for i in range(len(args.ckpt) - 1):
base_model.load_state_dict(torch.load(args.ckpt[i])['model_state'])
w_1 = get_weights(base_model)
base_model.load_state_dict(torch.load(args.ckpt[i + 1])['model_state'])
w_2 = get_weights(base_model)
for alpha in alphas[1 if i > 0 else 0:]:
w = (1.0 - alpha) * w_1 + alpha * w_2
offset = 0
for parameter in base_model.parameters():
size = np.prod(parameter.size())
value = w[offset:offset + size].reshape(parameter.size())
parameter.data.copy_(torch.from_numpy(value))
offset += size
utils.update_bn(loaders['train'], base_model)
tr_res = utils.test(loaders['train'], base_model, criterion, regularizer)
te_res = utils.test(loaders['test'], base_model, criterion, regularizer)
tr_loss[step] = tr_res['loss']
tr_nll[step] = tr_res['nll']
tr_acc[step] = tr_res['accuracy']
tr_err[step] = 100.0 - tr_acc[step]
te_loss[step] = te_res['loss']
te_nll[step] = te_res['nll']
te_acc[step] = te_res['accuracy']
te_err[step] = 100.0 - te_acc[step]
values = [ts[step], tr_loss[step], tr_nll[step], tr_err[step], te_nll[step], te_err[step]]
table = tabulate.tabulate([values], columns, tablefmt='simple', floatfmt='10.4f')
if step % 40 == 0:
table = table.split('\n')
table = '\n'.join([table[1]] + table)
else:
table = table.split('\n')[2]
print(table)
step += 1
np.savez(
os.path.join(args.dir, 'chain.npz'),
ts=ts,
tr_loss=tr_loss,
tr_nll=tr_nll,
tr_acc=tr_acc,
tr_err=tr_err,
te_loss=te_loss,
te_nll=te_nll,
te_acc=te_acc,
te_err=te_err,
)
if __name__ == "__main":
parser = argparse.ArgumentParser(description='Connect models with polychain')
parser.add_argument('--dir', type=str, default='/tmp/chain/', metavar='DIR',
help='training directory (default: /tmp/chain)')
parser.add_argument('--num_points', type=int, default=6, metavar='N',
help='number of points between models (default: 6)')
parser.add_argument('--dataset', type=str, default='CIFAR10', metavar='DATASET',
help='dataset name (default: CIFAR10)')
parser.add_argument('--use_test', action='store_true',
help='switches between validation and test set (default: validation)')
parser.add_argument('--transform', type=str, default='VGG', metavar='TRANSFORM',
help='transform name (default: VGG)')
parser.add_argument('--data_path', type=str, default=None, metavar='PATH',
help='path to datasets location (default: None)')
parser.add_argument('--batch_size', type=int, default=128, metavar='N',
help='input batch size (default: 128)')
parser.add_argument('--num_workers', type=int, default=4, metavar='N',
help='number of workers (default: 4)')
parser.add_argument('--model', type=str, default=None, metavar='MODEL',
help='model name (default: None)')
parser.add_argument('--ckpt', type=str, action='append', metavar='CKPT', required=True,
help='checkpoint to eval, pass all the models through this parameter')
parser.add_argument('--wd', type=float, default=1e-4, metavar='WD',
help='weight decay (default: 1e-4)')
args = parser.parse_args()
main(args)