-
Notifications
You must be signed in to change notification settings - Fork 2
/
gaussianfits.nb
3518 lines (3484 loc) · 199 KB
/
gaussianfits.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 200394, 3509]
NotebookOptionsPosition[ 198936, 3465]
NotebookOutlinePosition[ 199317, 3481]
CellTagsIndexPosition[ 199274, 3478]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], "\n",
RowBox[{"Unprotect", "[", "y", "]"}], "\n",
RowBox[{"Unprotect", "[", "v", "]"}], "\n",
RowBox[{
RowBox[{"y", "=",
RowBox[{"Flatten", "[",
RowBox[{"Import", "[", "\"\<C:\\\\Data\\\\y.csv\>\"", "]"}], "]"}]}],
";"}], "\n",
RowBox[{
RowBox[{"v", "=",
RowBox[{"Flatten", "[",
RowBox[{"Import", "[", "\"\<C:\\\\Data\\\\v.csv\>\"", "]"}], "]"}]}],
";"}], "\n",
RowBox[{"Dimensions", "[", "v", "]"}], "\n",
RowBox[{"Dimensions", "[", "y", "]"}], "\n",
RowBox[{"ListLinePlot", "[", "y", "]"}], "\n",
RowBox[{"ListPlot", "[", "v", "]"}], "\n",
RowBox[{"Protect", "[", "y", "]"}], "\n",
RowBox[{"Protect", "[", "v", "]"}], "\n"}], "Input",
CellChangeTimes->{{3.5503828027323666`*^9, 3.5503828385034122`*^9}, {
3.550414353673428*^9, 3.550414374218603*^9}, {3.550416441905868*^9,
3.550416468395383*^9}, {3.550416753904713*^9, 3.550416765819395*^9}, {
3.553262494451658*^9, 3.5532625085934668`*^9}, {3.5532628020325947`*^9,
3.5532628241308584`*^9}, {3.5532630027850766`*^9,
3.5532630299346294`*^9}, {3.5532638372648063`*^9,
3.5532638694726486`*^9}, {3.5532705760312414`*^9,
3.5532705852657695`*^9}, {3.5532706231289353`*^9,
3.5532707885013943`*^9}, {3.553270824532455*^9, 3.553270849235868*^9}, {
3.553270976481146*^9, 3.5532709963902845`*^9}, {3.5532713181876907`*^9,
3.553271343024111*^9}, {3.5532737698649187`*^9, 3.5532738269681845`*^9}, {
3.5532738684565573`*^9, 3.553273876050992*^9}, {3.553274058115405*^9,
3.553274117622809*^9}, {3.553274171593896*^9, 3.5532741757161317`*^9}, {
3.5532743827539735`*^9, 3.553274385456128*^9}, {3.5532751166389494`*^9,
3.553275122574289*^9}, {3.553275201500803*^9, 3.553275213626497*^9}, {
3.553275276783109*^9, 3.553275295058154*^9}, {3.553275987306749*^9,
3.553276004212716*^9}, {3.553277201651205*^9, 3.553277224653521*^9}, {
3.5532781105331907`*^9, 3.553278128463216*^9}, {3.5568321411194506`*^9,
3.556832189830237*^9}, 3.556833963420188*^9, {3.556834239067954*^9,
3.5568345679617653`*^9}, 3.5568347792148485`*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"Remove", "::", "rmnsm"}], "MessageName"],
RowBox[{
":", " "}], "\<\"There are no symbols matching \
\\\"\[NoBreak]\\!\\(\\\"Global`*\\\"\\)\[NoBreak]\\\". \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/Remove/rmnsm\\\", \
ButtonNote -> \\\"Remove::rmnsm\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.556834287553727*^9, 3.5568342968642597`*^9}, {
3.556834336816545*^9, 3.5568345683687887`*^9}, 3.5568347797908816`*^9,
3.5569351640171175`*^9}],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{{3.5532630098764825`*^9, 3.5532630333608255`*^9}, {
3.553263841719061*^9, 3.5532638710697393`*^9}, 3.5532675268958406`*^9,
3.5532704479109135`*^9, {3.553270587819916*^9, 3.5532705971404486`*^9}, {
3.5532707174993334`*^9, 3.5532707390785675`*^9}, 3.553270790440505*^9,
3.553270827957651*^9, 3.5532709141645813`*^9, {3.553270981479432*^9,
3.553270998487405*^9}, 3.553271101755311*^9, 3.5532711931245375`*^9, {
3.5532713239370193`*^9, 3.553271345318242*^9}, 3.553271883971051*^9, {
3.553273778912436*^9, 3.553273790630106*^9}, 3.5532738313374343`*^9, {
3.553273874197886*^9, 3.5532738781861143`*^9}, {3.5532740663208747`*^9,
3.5532741195979223`*^9}, {3.553274155154956*^9, 3.553274178104268*^9}, {
3.553274377124652*^9, 3.5532743876602545`*^9}, {3.5532751278505907`*^9,
3.5532751601534386`*^9}, {3.553275207023119*^9, 3.5532752161036386`*^9}, {
3.5532752848715715`*^9, 3.553275296412232*^9}, {3.5532759945051603`*^9,
3.5532760057288027`*^9}, {3.5532772100686865`*^9, 3.553277226895649*^9}, {
3.5532781189936743`*^9, 3.5532781302033157`*^9}, {3.5568342636633606`*^9,
3.5568342968712606`*^9}, {3.5568343368235455`*^9, 3.556834568374789*^9},
3.5568347797968817`*^9, 3.55693516406012*^9}],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{{3.5532630098764825`*^9, 3.5532630333608255`*^9}, {
3.553263841719061*^9, 3.5532638710697393`*^9}, 3.5532675268958406`*^9,
3.5532704479109135`*^9, {3.553270587819916*^9, 3.5532705971404486`*^9}, {
3.5532707174993334`*^9, 3.5532707390785675`*^9}, 3.553270790440505*^9,
3.553270827957651*^9, 3.5532709141645813`*^9, {3.553270981479432*^9,
3.553270998487405*^9}, 3.553271101755311*^9, 3.5532711931245375`*^9, {
3.5532713239370193`*^9, 3.553271345318242*^9}, 3.553271883971051*^9, {
3.553273778912436*^9, 3.553273790630106*^9}, 3.5532738313374343`*^9, {
3.553273874197886*^9, 3.5532738781861143`*^9}, {3.5532740663208747`*^9,
3.5532741195979223`*^9}, {3.553274155154956*^9, 3.553274178104268*^9}, {
3.553274377124652*^9, 3.5532743876602545`*^9}, {3.5532751278505907`*^9,
3.5532751601534386`*^9}, {3.553275207023119*^9, 3.5532752161036386`*^9}, {
3.5532752848715715`*^9, 3.553275296412232*^9}, {3.5532759945051603`*^9,
3.5532760057288027`*^9}, {3.5532772100686865`*^9, 3.553277226895649*^9}, {
3.5532781189936743`*^9, 3.5532781302033157`*^9}, {3.5568342636633606`*^9,
3.5568342968712606`*^9}, {3.5568343368235455`*^9, 3.556834568374789*^9},
3.5568347797968817`*^9, 3.55693516406312*^9}],
Cell[BoxData[
RowBox[{"{", "1001", "}"}]], "Output",
CellChangeTimes->{{3.5532630098764825`*^9, 3.5532630333608255`*^9}, {
3.553263841719061*^9, 3.5532638710697393`*^9}, 3.5532675268958406`*^9,
3.5532704479109135`*^9, {3.553270587819916*^9, 3.5532705971404486`*^9}, {
3.5532707174993334`*^9, 3.5532707390785675`*^9}, 3.553270790440505*^9,
3.553270827957651*^9, 3.5532709141645813`*^9, {3.553270981479432*^9,
3.553270998487405*^9}, 3.553271101755311*^9, 3.5532711931245375`*^9, {
3.5532713239370193`*^9, 3.553271345318242*^9}, 3.553271883971051*^9, {
3.553273778912436*^9, 3.553273790630106*^9}, 3.5532738313374343`*^9, {
3.553273874197886*^9, 3.5532738781861143`*^9}, {3.5532740663208747`*^9,
3.5532741195979223`*^9}, {3.553274155154956*^9, 3.553274178104268*^9}, {
3.553274377124652*^9, 3.5532743876602545`*^9}, {3.5532751278505907`*^9,
3.5532751601534386`*^9}, {3.553275207023119*^9, 3.5532752161036386`*^9}, {
3.5532752848715715`*^9, 3.553275296412232*^9}, {3.5532759945051603`*^9,
3.5532760057288027`*^9}, {3.5532772100686865`*^9, 3.553277226895649*^9}, {
3.5532781189936743`*^9, 3.5532781302033157`*^9}, {3.5568342636633606`*^9,
3.5568342968712606`*^9}, {3.5568343368235455`*^9, 3.556834568374789*^9},
3.5568347797968817`*^9, 3.556935164552148*^9}],
Cell[BoxData[
RowBox[{"{", "1001", "}"}]], "Output",
CellChangeTimes->{{3.5532630098764825`*^9, 3.5532630333608255`*^9}, {
3.553263841719061*^9, 3.5532638710697393`*^9}, 3.5532675268958406`*^9,
3.5532704479109135`*^9, {3.553270587819916*^9, 3.5532705971404486`*^9}, {
3.5532707174993334`*^9, 3.5532707390785675`*^9}, 3.553270790440505*^9,
3.553270827957651*^9, 3.5532709141645813`*^9, {3.553270981479432*^9,
3.553270998487405*^9}, 3.553271101755311*^9, 3.5532711931245375`*^9, {
3.5532713239370193`*^9, 3.553271345318242*^9}, 3.553271883971051*^9, {
3.553273778912436*^9, 3.553273790630106*^9}, 3.5532738313374343`*^9, {
3.553273874197886*^9, 3.5532738781861143`*^9}, {3.5532740663208747`*^9,
3.5532741195979223`*^9}, {3.553274155154956*^9, 3.553274178104268*^9}, {
3.553274377124652*^9, 3.5532743876602545`*^9}, {3.5532751278505907`*^9,
3.5532751601534386`*^9}, {3.553275207023119*^9, 3.5532752161036386`*^9}, {
3.5532752848715715`*^9, 3.553275296412232*^9}, {3.5532759945051603`*^9,
3.5532760057288027`*^9}, {3.5532772100686865`*^9, 3.553277226895649*^9}, {
3.5532781189936743`*^9, 3.5532781302033157`*^9}, {3.5568342636633606`*^9,
3.5568342968712606`*^9}, {3.5568343368235455`*^9, 3.556834568374789*^9},
3.5568347797968817`*^9, 3.556935164555148*^9}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJw9Wnd8Tff7T1GiLb1GNW2Na0WMErViv8WKFbFDjCuRQSK52Ts5d8eqKEpR
rrZ2kRoVFLetllKkLRWj7VVasdrUjPrid06f9/nlH6/HuZ/xrPezPs0jk8ZG
V/Px8alf3cdH+1f+KvtPXLdte3lsCPgf+Cuvf7fpB4I8QvqidU3L8oG7QdqA
GW1PGo7d7M3fN0SjJyf/+s72Gr/74dLllWtLjj7qL3RjzEwOurdtfzN+N2JX
x8SPX/i+K+kW2DzpxDtHb4D7tULbHe2e7PB9mbQ/znf9O2jwkWD+PgAXTj8a
dzW6Ab+3Qx3v28XurGGkO8DWaeTGl2K6ku4o/PyrnxeII3XXdPmoYXvSndH+
4YpflsZ24e/fwcjkCRcyv3l2ROgu2GoaP7aNV+evK15ZusU6ZktP/r4b6oe+
PP3+uddId8eFGRmjmw7pxd/3wDtBw6d/+HVL0kHwv2Zbe2rIRP6+J37Za88r
a6nz3wux567PaT9Rp3uj5eEGu6e/UpPr++CArfyD4Fj9fn0xO6nS8d39t/n7
flC529Mj3J+/74+43TdT96YHkgYeXZu5/ueFoUIrgHHAP1HfLxrK7wNQ5Jjy
0xdR7WQ/ZQCi/poS3C/uRe4fDFV7X7y4qzPXByNy/c9d/w7R7WMg5l5/suWf
N3l/ZSAOxNd+7F4xmusHwZDTfVu/36gvZRDabWlQNihOl9dg9Jg3wPRHoL7/
YKzKXPNRy3mduX4Ivn4QMHXxRe6nDMHr+37w+dXah9+H4nz9uwPODGnF70NR
tnr+eL+IV/g9BB8N/vze0/Ed+T0E2vJq+wfy+zAM6/i8+dOYIH4fBjSY+fVP
I3R7GS7yKNPlNxyHxr7f/N1zbfl9BAJV8xuyQZffCKRqF9rZnfuPxPsDFyRc
z9XPHwlN3Q+H9uT6UYj47MjttSO7c/9R8O27esK6loO4PhSWfkvaDDvvx/Wh
mDPq3rvjxlNePqPxoierZp1DPlw/GqeLfvzVO24A14dh4PbZvya/RHkiDOPU
66d3bsP9wtBq//9c90f0lvWeMCw/WzuuRVfdPsZg/KR+J+8p9YXGGLw8pHV6
teHED2UMVGm1j75AfPCMwYf1Nhz6sk03rh+LRtqFt43k+WNx6/fub3p6U//K
WPgsKXjSq7IX148VvBg/gvcfh/2LalY2Ok4a46DBS0/jG1w/DueWzWry7o4D
gj+ecZhR6/QbY0705fnj0UX7a0B9YTxqv7V2etvcbrz/ePw5df62EwX0d894
7N57OCSu/Vs8fwLKCj4pemWEH9dPQERwv4oLn96V85QJ2P1K8qcLcok/nglY
PC6t1YrCHlw/EVMnPJxWr3ETrp8IzZwqJvO7MhHr+nQ4u2qIvn4irqriiTBS
Hj6T0Hpal8cxvRty/SS8Neu9JbsN3E+ZhCuRg+ts/FK//ySo6L0gIXYg+Q/H
pccFc77IG0r5hUNFN/c8E/FMCUf45m6neifSHjzhWPnLUpfjZiDPn4wznY25
h3IfCv5gstjPZ514/mQMWfaw5oyqAK6fDGfKR9Mce97k+im4V+32x+NW0H4x
BS+MstcZvZj7K1OgSfPfPF3/U1Cxzhs5+G0D10dgeKsfTgY8bMj1EfAf9+LH
7918h+sj0GrF8+KCqMFcH4GS6tcXBjzV/Xsqxlx8K2/me/5cPxUzNQEM0+U/
FR88iAxoc/Ge8OeZioWGpnMbd27M9dPEHzrU4fppqKFuf2fUO+R/Grofb9Uy
tjnjnWeayOvJPcbD6Si80Dc7fLNu/9Mlfg7U7z8d7Xq9d7KwlP7pmQ4tvFXt
1+PBDHT+oJ3f8qP0Z8yANVWVeN3hXD8DwbdHrr83hXjnmYHUuCV38prRP3xM
OL31zLmJfYi/RhOuN9lUEbK2L/czyf6tiFcmE7Tw8dpBylMx4dvLasCqojzd
JuyZ/GD/xfncz2MSezJQf14TSlLUCzTW8XsmTnfvsbHN7epyH+NMfHDw/eJX
c3R+ZuLwujc7/WInnphm4g0NQGuP4/kz4dqkJgyf0D7dM9Fzz/GMw4uJT56Z
aKDCf8wE4ol3Jkp3agag43ck/DQFWtvx/EhcPm9JHWLvx/MjsXH1UWPJXfJn
ipT4b2rN8yNRq7JRSFifTjw/Et9lqDdezPjjiRR/TxpF/iPR9PKHey/1a8Hz
o/D0Ybp3zZi2lH8UBv1755bnxhCeH4W06VErNhfQn01Rcn5xc6GVKPzk6rg5
qSfx1x2Fea1y3vhm18vkP0ri813y643CsbaqQR3pz/Nn4XHnP3e0vvYm+Z8l
/j2f+sUskVcI8wnTLJzN9xm7upT2q6i/79TJ0+9fI/mfhff6+2X9Nbcl+Z+F
SVkrFlQV8Lt3luR39fT4Fo2rRXurGnr43RiNDtFv/B5+nXiHaBhu7NtZ3UV/
MEWj4Y6hV3KWEU+UaPTXDHAN7dMdDRXdL761kPrzRAue9qR/e6PRtV73Pod+
ZDz1iRH5X6E8jDF4lv+to7qF+IIYxGsJ4cFgnh+DmzXUHb7n/koMPj4+ZeCW
QzdFHu4YvH17tutITQPlHwM124ndPac15R8DLR1ovUGPz7HkR/e/WPRqOTzX
9hvjO2JRuenbET3m0b5NsdDC18UF9CclFpuyNY0yf3DHYtRrC4ff3EN5eWLh
DPr5m7lnGX+9sWjvanThdKYeP+IEr36hPxrjsPZm8eor3zJ/RRzU6HUprpj2
aIrDzeW7XkneM4Hnx2Fi/o7PI5sxXrjjoGrv9X1LqA9PHDr90qqmxUE88sbB
J8lS45vRjK8+s+X3FtLG2dgXqSLiB8Q3zMaiFYn1bW76m2k21jw+19hY2kjk
p8yGZl6hCfQP92z8ax+a4dNsHfF6Nlp4DVvPJjwW2jsbQ1Mev3pjqB6/5iCx
q7IPq6hf4xzc8O/s+2leD9kPc6CJp04/5j+mOdDUeXMB5aHMwVxNACk6/s2B
6Y+yFpcuEA88c7CztZrgH6I+vHMw4nitvqtb6/VIvODdKh1/4lHd33wrseB1
nh+PZvcTJuY/pD+a4rHUr8bEuoeY7yjx0MqvA+XEF3c8Pn6v1wujjhLvPOp6
x60xpb92EdobL/aYo9crCXhRW1CH9mVMwJPfp9R8fmY043kCTvUO/WHJVMrL
lIDfvC8v3fIO7UlJEHzrT37cCTj8hc+TioY+5D8BXRqNim1ztTn5TxB7Mur1
1Vzkl+2e/ODLsTx/LqppBvrXdKExV/KzSWE8fy7CNIM4yfigzMWiwnXJV8D4
5p6LV1/euzF7E+s7D3//NfXhnYv67o3vb99bl+cnIiFi2QXjuBo8PxHzS67c
WD42lOcnYtiHiv9Xv/I8UyLGX92w+qhHx/9E9Cn6sG3a4SY8PxFaOuytS9qT
iBEaYPys6z8RB9uoN3xfz7+ToF33WHPSxiR8v+J1U7MmVZR/EtTqaFLEeuKN
KQlr/1YBIVbPD5IwSSsQmjYQft1JUKNtyZW2rO88SWg3dmZCc1/mf94kzFPT
/5cbED99zLg9prSpoz3PN5ilHosN5n3Mov9ltL9As8TvPOoPZnyulqu7LxBP
wsxi/2+8wfua0fb9iCl1brDeNZuxa0jfQR/n0r4VMxJHjg7/fQDr92IzfJ4v
azfm4U3h320W+QwjvyVm6T8M5H09ZqjcHR8wj+vLzFhYFfp9TnJt8mvG4S9f
9x/3gHhSacak250Ottmk10/J+HLzJ6FY6i+/NyTDUvvygdWbmgptTMbF6ts9
xefqCB2YLPXMMD0+Jov/n6D/hyXjmIrWA8p0fSXj0+3lMzJ6ML82J6P2/GZR
f13sQP0lQ0uPV34/RPYvTkbHGj0DZm5kPu1ORtSaI7Udx2mvJclSX/syv/Qk
Y+9rasI4bITQZSo/J9YP/vwq6xtvMpaHfLRizCusVyqTxZ6HMF74pLC+0/Wf
giP5TYJir1FexhTMfX5i+NKvGJ8DUwTv+7eR/ZEi/YsTlF9YCjaWbr19sEVj
oU0peEtryARwP3MKcodF7Xl3fgvynwItPam/rL/QxSly//gIod0pyNQSwKek
S1JQ+KSX+XRFK/KfIvV4POVXlgItnDbsWCnx2JuCvfOWPmmytRH5T8G6U2rC
62Q975OK3bl3S8IWUF+GVOkvufR4mIo+7oQTr02nvQam4qR6vXtNiC9IhWaO
CxYyvwpLRd3DgR+0KydtSsXia3eb/biJ9ZY5FXA9vlutA/1BScW0o5mRP5/k
/YpT8Ws11UIG0j7dqdDK8/k12e8qScWEOQ/R3sD8xJMq/Z0i+l9ZKoxaQ2Kt
jjepUr99y/yikrSVeOqThtE7l0UXVSf+G9KkP9Ce/QpjGlLmv6tywP5JYBpa
BRQs3B9fXWikSbz8H+N3WBrUaiXkyDTmO6Y0RJzeULp1pJH8p7F+1fsLaVLf
hNA/itPQbfqBYa9Y+8jv3WnSD6pgPVaShk8bT5nV+/kU8p+GNK3A+5P1U1ka
tPA6oT/9y5uGl85/bO77Eu29Mg0PA6Yu/moa1/uk4967agB7RHkb0jFWhcNb
6xnPjOmCt68zXgamw+ZRDTSU9QjSJb9O0fEvXfxjJ/ulpnTJF7rQX83piNca
WA3In5Iu/ZB9tLfidEy7PKR6VgT3c6cjWkv4zzAelaTDlDG6aaN/dfxLR1yL
hKycJvSvMvIzifbsTRf9XuL6ynTc/XFUpKFCzz8ypN90nvI3ZGDJq2oA6K7n
oxmSP2/hfQIz8GygWqB4dfzLwINLasG0kfVOWAZ+TJpR6/QHlLcpAwcuzn8a
3Z/5ijkDZ0NG/HEngPauZGDlSDVh3cr6uDgDj1Q4HPmA/LkzoGrrQUCrUfK9
JAM7VDgdfXOs0B7Sd8eQ/wypBxYST7wZOPF18PbZf5HfygzM8evXYuOgZuQ/
E1p6uvw61xsyobUbplpYXxozRb4PmL8GZmLLuh6vbSkhHiMTQ4I1Cyc/YZlY
Vavk+M51VwR/TJnYEKoi1MeUjzlT4sXvxEclEyEbyn8IOnte8L44U/oVt6hP
d6bU2+2Zb5Vk4g8VTpIK9fw+Ey+OefRCyFPic1mm+O9P7Id6M3GnjgZIrOcr
M3HlTGVMnV/Psl+cJXjlR38xZEk9b6Y9GLME7+ZSH4FZaK4lAHN5PrKgtUcf
pg8XfsKy8B8ZNkRoUxYGLUi4/mQA7cmcJfJd1JH8Z8n9brI+K84Sf1/ZQb67
s/DTuqch9d4g/pZkoVrd9cNPTX+d/Gfh/tOzWTc+pz+VZeHJ1LnfPEuh/LxZ
qK85rIP4UZkl+H5Mt/9saOXl9T6MB4ZsVMWrGcrRauQ/G7cD/Z8eakj9BGbj
7Ko/m2xaSf9GNjS4GFNB/AjLhgqOtR+H0d5N2RirBdxIyt+cLf6wk/JVsrHZ
73pS8Hrmi8XZiPnvj/bmzpb++y3uV5KNXG2gcYD7ebI5/wgWuixb8rnVxCtv
Np7vOLPmQds7Yo+V2YJfY1m/+eTA98+Kf3Jz3xJ+DDmSH/xZT2hjDsYn1UlY
rhC/A3Okv/Fcj385UKupfTtb6v6fgwT/3xJSBzI+mXIQrCWEEZxvmHNgG6Od
oPdXc9BQc9hB7AcW50AbX4wfxvrKnQOtm/S0NeuXkhwccB+ODs1sQf5zJL87
xPhaliP58mTiszdH6r1a7DdX5iBnQ4eBjSNoLz658vsBvL8hF9o4Z9iHg8l/
LoYu/u3S/Vj2MwJzJV+IYr2FXOm3fU58DcvF44tdRlQ7W4v85+K/cLmF9zXn
Sj7wN/s9Si42a+V922FyXnGuzEeOMV64c9Hi3fTkt9IZ30pyobV3S2oRPzy5
aKOG38YHWG+X5WKlZ/vB7Jvsp3pzpR/dWLf/XPT8+Zu5XX30eV0evnm2S+VI
j/950r8/wPrGmCfyHcz6KTBP8rE7lBfypD6v0PnPg6N107DuG5gfmPKkn95A
13+e5McB/L2SJ/5UTLo4DwuHqwWThfbtzhO8rMZ6piQPc1xH/OM/oTw9eYIv
39Efy/KQpAHGEvbfvXnQyk2fM+w3VebhqBoOfv2H+vPJhybeOiWMF4Z8ibeF
Ov7lY5lLdcBWxNPAfNHXeuYPyEf4iXeOfvaQ9hqWD61devYx15vyUXqtdFyv
UvYnzPnQ2jM17uvznnyp1y/Tv4vV9UOfmbw9Wc+48zFdaxj05nypJB9zvkhb
6rdskNCefNFfEeVXlo//+WkNUurPm48K67/v98xn/V2ZL/OV9uTXp0Dq/7fZ
7zAUoNmIZgfc/ThPMBbgfo/1hhdqEW8DC5i/tSf/BQjUCtpoxoewAvTQPjdn
/9VUAK3ds/gHxhdzgeDHI30eWIAYbQDpT38sLpD84TPmu+4CmQ/tZn5UUgCn
CodXr+n1fQFWT1i3bbsv8a6sAC21gcbCAfLdWyD9Szvtr7IAWS+rGexlff5W
iO/VdDV/kV7/FMo8r1zvRxXKPGLcePJfCO/humu6VCN+olD6DaOJ12GFgtc/
6f3KQtxtdWPVd/tqyn3MhbjZz2fLqKnsrymFMt/ZSPkWF+JG/tX4M59eYz+x
EGq2+9voRcHkv1Dk3Y35tadQ+BnP+5cVin47MZ/xFmKy1gDM1/GvEGuOGktS
SvX+lyLzcoX9F18FQdrA3sD63aDg7yvvXQ2dzfzGT5F+qI31g1GR+zdlfA9Q
cK1hk+/++Fv3F0X0v4T1UJCCfO05wWziERSo1V/D/k15/xAF3bWGwwXmX2EK
+2ukwxXpl66ZTPkq0l88RX+MU2Q++Cnju1mBIbznnuMF9I8sRfqppygfRZF+
rT/1UaRIvd6f9XOxwnkO8+mVCuodO1C6qBHxyK3K5zs1wbzxVPS1WZH503De
t0TBt3O7KvvKKZ9SBXfWqgJ7h3juUTD44Ett+8+uJfsdV7BeLRdSz/G8MkXq
kSv0l3IFWrl+6bzeT1aQXm2V71s1iWcVisTLQ9RPpYK2/bc8vFFO+6pSEKG6
T8NfiCc+FvEPN/HL1yLz5Utcb7CgzVfOTZMuEs/8LPJe4izjq9Ei9UAg/SnA
AsdnDmOtPzhfCrTArCWkBuJvkAV1tAZgAP0LFmjh+FZ9+k+IBV2OftYxMYr8
hlmglTtznvK8cJVW4do7TcdXi8QTM/OvOIvMN2tNpf4teCFw7YCBhf+KfrIs
0MZD696k/SgWaOn2k4n05yKL9Cc9PL/YIu8PArjfSguaaA55L0potwUDrL8f
W5lK/N5sgdLm7akTZ5ZLvlhikXq8KfG21CL1rlfXvwWDtQTlS+LVcYvUr8/9
hS6zYFGAmiEb2K8rt0j+v5T68Vqk//o38abCIvOy++xHVVrQsGxQuRr2ZL8q
C7Tx4tcf6fNnK3p4733tO4b5ja8Vw7UEsybjvcEKbTpka0q89bOik6dfr/To
+8Kf0Sr11bNJ1L8VL43o406Y/xL1b0Wv8OfXA3+rRv1bpb5cy/4NrOJPp5m/
hVgxTU3fdy3V8dQKrf29I4b2Em6VfPIW5WWycl7M+8ZZBS/eoT7NVuSp6Vr8
XeJ3llX6CxdpL4oVaz5quf9/x5hfFlkFT/MYT4qt0NqPbd9kPbLSCtez2h0n
punx2YoKtXxecY74tdmK17WEXK/3SqzQ0s99i2m/pVZocNh5Be3XY4XWTnxj
Cv33uBX9ssM3d2tN/Cyziv9/R3wrt0r/K5z1t9eKc/6hf2XG1aP+rYLHaym/
Sit6agZWi/hTZUV1jcFQvf9uE3sPCBba1yb9m+W0f4NN6sMgyt/PJvOZ/bR3
ow0Z3jX1NrSmPANs0J6fpO2hvQfacKN9SJdGo+oLHWST+NGe94NN5vHbiR8h
NmjThmdd9HrKBqOWECTSnsNtUj++qM+DbXhFGxh8yfvE2aA9X5vRnfowq/xM
VRFKr1ezbJgQqFaYBv19ig3NJ3tqJObT/otsUt92o30V2/DqYO2FDfOhlTbx
5z9DhHbbpN7exvtvtkFzt/uryF+JTeznhO7/NrEPG/HEY8OZmHPX5zSgfR63
4VzWDf/OWeS/zCZ4doz3L7dhQfIz/4bV+P7Aa4N97amtZ6IZzytskj+nM/5U
2lif6vq3ST0wS58/2LHtzLmJt8/Tnnztkg89pv8Y7DL/Gk7azy7719bjvx2f
XbmxfFcNyjPALvVIDv0p0A4t3DTpGSzfg+ziz4epT9ix9Z8fR0X66vhvl3l6
B+ZrYer+R26v7YNwocPt8j7PxvuY7NL/+5n7x9mhwXXZLr3fYpd4E0L5Z9mh
uU/RWPYbFLvEsxqc7xXZMVsbUE5gPVFsx6MTX0w4v/5PiR8r7dKfSmc+6rZL
PhJAeWy2QxvfdrpN/ZXYMUULyP9QH6V2rK/q/OeO2cw/PHaEBgzyNE/j+5Xj
dvHPZ6wfy+y4kqOe0JznldvlvVi83t+zQ1HV1aSS+1XYka01ZL+gPivt6Ks1
QCdQvlV2mT+f0ut/BzT3PdSc/u7rEPmv0etBh/Qrx7Ee83NAreZOGq4zfhkd
iB00O6myCe03wAFN/VMak/9AB1ar5V2Fh/YW5MCCp9GPrs2jvOAQ//2Hvw9x
wPJ87LbxD/aKvMMcko+N1uO/A1+mqhlpS1/q3yH+6KQ/xjnQXBuYOli/mx3Q
ytlVYD2R5ZB+7G69/+zAtP8SGPajihyCN02D5XuxAz+0UAsKPT9Z6YD2PHLa
buKz24GhmsKq+H2zQ/JNJ/PtEgd+GhVpCN9CvC11IPc/g9Hf8zigjdsm3WJ8
Pe5A1birG1bXoH2WOcSeq9Efyh0yrx6u5/fU12XGkwqH1JeXdfx3iH/peFfF
9Tf190NOmbeG8jxfp9QPx1gPGJxy32DOX/ycko8t0vujTozXHFChvwU4xR7O
kb9AJ7T2c5ReXwU5JV/R4xGckv/34/1CnFKfVPC8MKfEs160l3CnzIMX6Pjv
hDZ+2voq6+k4J04ebm99/vZdyU/MTrHvf9jfy3JKv+b/33M6Jf+IYbwvcoq9
L2X9UOxEby2BnU77WOkUfa3W3/s45f1oKeW12Yn22oOia7xviVP68edJlzql
f6+/N/A40UkbIAxmP+a4U96fXiA+ljmlfjvF+5U7sfC1biudzfnezEt59qf+
KqiPMn+5b6UTZ9X04vdS2mOVE5r5jgjS39+6sPBSnE/SBtqXrwtL7uT175aj
479L5iehtDc/FwK0gre2Pq93yfxiNPcLcME54Ysl2Z80FTrQhWqagpux3xXk
Ejy/rM/Xef4N5o8hLnkP8gLxJMwl/cpE5j/hLoSq7tQzb4bQJpfoaxvXx7mk
Xr7D/N7sknlxPNdnkW7P+ysuaOnjzio9/3cxv+H3YhfGaAccoHxWuqQ+Ocj7
uV3SH5un698l7+siZgld4pJ5/CHuX+qSftI1Pf9ziX9sDxb6uAuqNF/3v6r3
c1ySz7fS8z8XTn2v/tWIFNrrknzlS9YjFdRfAfOLSpfkBxd4/yoXHgxXLaqj
7v9FfL/D/NG3CB20hlwm81FDkeTber3jVyT11krSRnV93bd3fbiO+ggowm+j
F61IrBkndGCR5DMdeN+gIs5nTUKjSPSZxf1CiqB1O1Y04vewIvGvWZRneJHg
Q7mu/yLpf//D73FFMq+7yv3MRTJPbkM6q0jw/O40oZUiDFG3P+tLuqhI8Pu9
GJQP+hCPVNqovdebH4f/AyPAmrA=
"]],
LineBox[{{786.8798039847237, 196.33932000000004`}, {787., 180.666}, {788.,
154.405}, {789., 80.3656}, {790., 142.018}, {791., 115.454}, {792.,
130.176}, {793., 140.032}, {794., 152.575}, {795., 146.395}, {796.,
142.186}, {797., 132.351}, {798., 72.8262}, {799., 82.9356}, {800.,
150.765}, {801., 177.586}, {801.8005344489029, 196.33932000000004`}}],
LineBox[{{803.250063440962, 196.33932000000004`}, {804., 164.659}, {
804.4660309801557, 196.33932000000004`}}],
LineBox[{{808.7047530511297, 196.33932000000004`}, {809., 148.827}, {
809.2015351725543, 196.33932000000004`}}],
LineBox[{{811.8175009627273, 196.33932000000004`}, {812., 187.335}, {813.,
192.415}, {814., 187.952}, {815., 152.952}, {815.259288838955,
196.33932000000004`}}], LineBox[CompressedData["
1:eJw1lQlU1FUUxkdTHCNzxFQUQTZtCGVxCzf8RLPBBVBQiDyCCzWRCeUGZoUZ
CfOWwaAjaiioJJklHqOmMhhKFKRsSjMUyVE0cQ2XVPRY/cf7mnPmzPmd++a+
u3z3Pr+FGbPTOut0uiLt6/rNWPJyw/l9FvieLqlqtpihc31sFrAlFx980nUh
sd2CM7Fi49LtC4jrLdDvGZi8ODGN2GHBBYd/c4e/4iYLElrLtxzk6rzTAl3G
2i51jYnEbRa4Bxrf5tFziNst+Nfv4Z0VOcp+zwKX+evYOGIdw+ynS/Mry2YR
6xn6L/vd42a2shsYgj0/PN7dFEjsyTCzD592ecoAYl+Gi9672kxyPLGRoSLx
yPCDvUKJwxiOJNRW7HwyyP6IIxi6FJw62FASQAyGeb6TbiwaOI7OmxhecSXU
I544jsG297GLPOk54iSGyQOvnBt9ZApxKqN6OKKIzZo/6/d/G8ePIP+ZDJ3S
008mp3iQPYuhb/rMW5Kp/HIYdmUfDhrroTiPoaXqvTWOwsH0/wKG71qf8m6Y
AOJihmO19yeu7+hMXMqgn7BlzjZ3P+IKBlPNW94RVlXvSoZrParDNiVPJ7Yx
lMeg94L4GGI7Q4irQR+q+OsZ7kbOyXU7d7bmETsYctc49r+QO4nsTVp9x55/
ybYvgNipxXNAC7BD1b+NIf/XP5zur84kbmeoru03JL48nPgew9KROV/hpjqv
49CqOcDeOIJYz3Fr0K8ZKd2eJzZwXF9lfPx2d9UvT80u45cHJqr6+HKMerO0
j+fwLnTeyHH/2hX7mBEqvzAOw6Wv9j62XvUvgmP51KI7bjVTicHhV/mGecOo
acQmjvQHiXM3Fz1B/uM4FpadGPlXnMo/iSPAsPdKv6FdyZ7Kkbx43JnYz+aR
3cyxunzo5IGNSn+ZHClBjYbD59T9WRxnnO6Fn3wfQpzDEZWqTdi3ivM4yqrT
YjbmPkX+Czhc4V37MZnsxVr8gRv/LXBTeinlKJ6hDcQpFV8Fx5e3Hh7POjuZ
uJKj981JP7+0Sc2jjZO+c1U/7Bwd4X9+PniN0kc9R/D6viePjkggdnCsmxVd
knMolriJ4/y6rT/t7jmB4nNymP2XZK0uUfm1afVp7ng7PU7NczuHjzaeIbFR
xPc4ohd9IXcPcaf/6wRejIpsOzl+LNn1AlftYwKm9Vb6MQjcPb+g7MTtMGJP
gcyUbkf7d1Lx+wrsYc1m3f4kYqPA+w2ugVf5hwlMcZpKaz8+MvERRwhs+VNb
GHnBdD8EqrcNCG3xVfNuEvi7+fe1y1aCOE7gRN1rI3Omq3onCewYl1cSVKTm
OVXgda8ezmE2pR+zQJ01fNWwtapemYL2U4jSd5bApme0hZYdSZwjqN53Vb55
Av+kaRlvUPcXCFQcmv5s/i/ziYsFVsb69E3PVvUtFTB1RFfFHvYmrhDQtuur
3W8ofVcKXNs6fuhxi9pvNoHbmjwufaP6axdIvXxx5nO7fYjrBX44FpzWf+Fw
YoeAtn3N/nsmUb2aVPw3VL2cAu88GJt5tEDNW5vAoF7x/vnzuxG3CyxI0DZ8
tEn1XyDmlw3z/gkYp/ov4ZLnb8+rfuklilsK1+feV/NgkDBn+5wuGeWl+i/h
t/JjR/Znaj58JZwf9Sr/7hUTsVGSHqzBqv8Sw1cN8xuUEE0cofwfmk0MCcdv
c6+GPqvqaZLY0elAV4+iUPIXJ7Gi82a919IosidJbOi5evSnkf/vfwlv1wKY
OJXOmyUaVmqKOjOaOFOisDXmUurDnsRZEtpr67HOEEucI/G1cGvvmxROnCfB
Bsz4ob3XIPJfIPHuMm1hxaj7iiW9t61ziUslDiwv9OwS+QJxhYRXaEugW+1o
4kqJDxrfMdW0BBHbJO3HYDXvdomqPg8ar+d70/31Ur0nKl+HJD3WjiFu0vJt
uDBxZ81IOu+UpJftSg9tErlXZtl86l4kbpfY+teuQ9OtKr57WnzauBQsUfrT
WdGeqw2sUfVDb4XX1vlBjaURxAYryl7ef3lZ1RBiTyv6adMS3xpJ9/takeFy
EKTeR6MVJ7R2fntY9TvMilGB1/fdXutB9ggruCaPjJNKb7Ai/NidvXt2+hGb
rLD5aBnoI+z/Abwm3Z0=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{0., 1001.}, {-75.6611, 196.33932000000004`}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.5532630098764825`*^9, 3.5532630333608255`*^9}, {
3.553263841719061*^9, 3.5532638710697393`*^9}, 3.5532675268958406`*^9,
3.5532704479109135`*^9, {3.553270587819916*^9, 3.5532705971404486`*^9}, {
3.5532707174993334`*^9, 3.5532707390785675`*^9}, 3.553270790440505*^9,
3.553270827957651*^9, 3.5532709141645813`*^9, {3.553270981479432*^9,
3.553270998487405*^9}, 3.553271101755311*^9, 3.5532711931245375`*^9, {
3.5532713239370193`*^9, 3.553271345318242*^9}, 3.553271883971051*^9, {
3.553273778912436*^9, 3.553273790630106*^9}, 3.5532738313374343`*^9, {
3.553273874197886*^9, 3.5532738781861143`*^9}, {3.5532740663208747`*^9,
3.5532741195979223`*^9}, {3.553274155154956*^9, 3.553274178104268*^9}, {
3.553274377124652*^9, 3.5532743876602545`*^9}, {3.5532751278505907`*^9,
3.5532751601534386`*^9}, {3.553275207023119*^9, 3.5532752161036386`*^9}, {
3.5532752848715715`*^9, 3.553275296412232*^9}, {3.5532759945051603`*^9,
3.5532760057288027`*^9}, {3.5532772100686865`*^9, 3.553277226895649*^9}, {
3.5532781189936743`*^9, 3.5532781302033157`*^9}, {3.5568342636633606`*^9,
3.5568342968712606`*^9}, {3.5568343368235455`*^9, 3.556834568374789*^9},
3.5568347797968817`*^9, 3.5569351646461535`*^9}],
Cell[BoxData[
GraphicsBox[{{},
{Hue[0.67, 0.6, 0.6], PointBox[CompressedData["
1:eJw923dYFFcbBfC1BqNG7MQSN1YsUezYjx07duyLiCIqLL3DAruwwIIYGzEW
jDESNYqxYV8TC2qMxBbUaIgVjZq1Y4n57ni/c/0nz8/xvu9z5+7uzJ05+Xx2
4Djf8jqd7n4FnU77r/zj6Fc3NGaYTxdn/P8vcGRVhYohyk4Y5RzWxKTsjGuW
uz0zlevA/+3kSauUXVCnaYnzZuVG+Gbl2HZ7lfVwq/7z0GPKTXEkqYvPb8rN
Mf/7g43/Um6JV5+17/FY2RWWZesmvFVug9of1zQ6daXb4bDbV21clNtj5Hcf
D2mh7IarDWO9Oyl3hN+SR7H9lDuhdkFY9zHKnbH+i3vjpit3QYcNXgHzlbvi
kMvptHDlbhiZ1WtjsnJ3vNz186ylyu4wt+kak6vcA7Vyv1vxg3JP5NZ1+XG/
ci+M6J278LRyb1zZUdP6u3IfzGuVvOG2cl+8WP388BPlfsj9OTaqXDcaEGdz
2Se0CTi4bVZ+Q3W8P4Y3/+2MqzreHy+GT0lxV8cHINl+ev1gdXwAanbrfWic
Oj4Q67b8UDxLHR+I4ee7Lg1UxweheOimbbHq+CDM1U6gOj4Yzzul31mhjg/G
uiniDKnjQ/DFueQDO9XxITgw6MVluzo+FMP2z316Vh0fiuclj7deV8c9kDTJ
UPhAHfeA8y+/3Xqljg/D2v4D/6vYnceHYZjfmX11aN1w/H6996XP1fHh8B2/
zdFeHR+BZ4VNqvVWx0dg7T+bToxQx0eine+nN73U8ZHYfzX9X191fBQ8PN+5
hKjjo/As3HwhSR0fjcSHLx4vVsdHo8bseR+vUcfHYM3vxS02q+Nj0HbU8P57
1XFPXA45//YEDU/MuT+w/kX17z3xdObuTn/Rdk+YLrYc/ViNH4u2b7c5vVfj
x2KfUd+8qjvHj8XQu0v6udD2sbg0rcK0FrRuHExJGXW70hiHT8reuQ1Q48dh
9aKAkWPU+HFoc+vPedPV+PG4VMWv6UI1fjx8Eq70iVLjx+PJc+0Dy/HjkeB/
MHSpGj8BbZYM6rBBjZ+Agsp7huer8RMwJLbV3ENq/ARcfJKTeFqNn4h4l897
X1XjJ6J61peT76nxE/G1+Pl8rsZPROuosKxyPTh+Ei6s+9ejJo1JmF03cM5n
tGkSHOklCW1p+yTE68Z97a7GT4Zrq6sTPdT4ydi7ekTQRDV+MgbXOmSbrcZP
xoXU9nmBarwX4rbtmZ2gxnuhanPXeJsa74VVX4k/arwXXGtU3f2dGj8Fe8yx
RTvV+CkwbKmY8bMaPwX/6MO/K1LjpyBuxb2j19X4qahabcr1B2r8VIhP28o3
avxUDMobt/Ojnhw/FecbH/u1Dq2bBsPSrg8+pzENH+8/9G1H2jQNOR062Puq
8dPQamPutRFq/HTsblDrlZcaPx2z+q/a4afGT8ejPVXPhqnx0xHbLq40SY2f
gY+/eVwhW42fgV2F4YfXqfEzMKBv6ZWtavwMFO2c8mKfGj8Ts1qfcT6pxs9E
Fc/xZy6r8TOx8vixu7fU+Jlo0atb+Sdq/Czsyt/U+L0aPwszf+9QXL0Xx8/C
w5HrnzWg7bMQ/VOtGq60zoAq7uIKROsN2Dmz2p1BNAzofzFON442GHBu2D8N
Z6n6Bsw4Yui+kM41wOlu6ZMY1c+AFdOmVk+jSwzQLicrVH9v/Dikz6ANqr83
Ziw6/v5H1d8bf9/s1sCu+nsjyiuv61nV3xsf/frp2Kuqv6j3fH3VB6q/N+Bf
u9Ur1d8bv/5pHlCxN/vPxvSJL2fUpPWz8eD0vKjPaMzG8if/dG5PG2aj2Tzv
Mb1o02zs+OO8vwedOxv9xg1KmUjbRb3IX+BLl8xG5OM+04NVfx9UnrM9IkH1
98GyK/qlNtXfB/10349arfr74GxYg/nfq/4+mPZ3hnmP6u+D+4Z/1/2s+ot6
qZapF1R/HzT992VYieo/B/nB4o5H9Z8D7eP6RvWfg/ufiAtKH/afgwhx+alP
m+ag0ptBa5vTuXOwNHDPvo60XdRb0Te0P10yB79UzV88mtb5Ymri51um0Xpf
lL788oQfDV8sbdwwMVL198XnS22rLaq/L7Y7vd/7perviz7xgRfWqf6i3rev
Mrer/r4IF6fvoOo/FxWzrx47pfrPxZeVRpZcVv3nok+7i6vuqv5zcWb94D3P
VP+5mFJ/72+6vuw/F/dsro+q03ZRb6f4gtIlc6Fv3fTnNrRuHratXXqjO62f
h951xBmlMQ/ibrLuONowD2H5789506Z5qNDS+HeA6j8PS77+q3Ks6j8PTWqO
b5qm+ot63a/9kaP6+8Hrh5FlG1V/P9xterj2TtXfD6EffkDZ3w9Njuy9f071
98MPXVpXuq76+6HX5lX6B6q/H06J259Xqr+oN2TZy8r92H8+yh+sVKsOrZ+P
7I4RX3xOYz4+21Tq0Z42zEfhWWOFvrRpPiYPvPnZCDp3Pu4UjO/pRdvnI6T9
8Ym+dMl8NJ4odjCqvz+2nj7cNkn190dPuA1drPr7o3D3+tmrVX9/BP/RuvFW
1d8f2uV4n+rvj8Unq004ofr7o7H2gVT9/XHSp3KbW6r/Aky8EjHYofovwO3R
4hus+i9A8LGpsR+D/RegkfaDSJsWYLNhwrhWdO4C9Lh8fFEX2r4AJ0d0T+tP
lyxAUPCRgWNp3UL8d89t1kxavxCZM76JXkBjIRpdqL0iUvVfiM0elh0W1X8h
JgRWX7hc9V+Im7fjU79R/RciaKrjm+2qv+h3zvvwQdV/Eb5/eV/8QrL/InRf
OG3ZFdV/EU789cv2u6r/IkyY3PfMM9V/Ed7HnbBU6M/+i2B71n29M21fBO3r
3pguEf1uNChuQ+sCML7Shi970voA/BVdZ9tQGgEIdFhOTaANAXjv++q2N20K
QJ4tYV2Q6h8AcXXeH6/6B+BYxOzLGap/AMY9uvAkR/UPxL+1p2/NU/0DkZF2
9uRu1T8Qn/7X99ZPqn8gNoWKHwDVPxDax+9P1T8QYrd98aHqH4iAlIaO16p/
IN69tVX9aAD7G7Gpad0T9WhnI7rmpPzVjNYb8XN17Yb8/3YzYmzyfJe+NIx4
9/2T86NoTyPSm/g8nkobjHBZfrGKH200Qtt+h9EmUa+jdkX+v7ON+PO7fm+X
0LlGLGq0o946Ot+It0uadtpK20W9gs0PD9BFRnRp38jpFF1ixE8bMptdph1G
eGonVM0/CDeyjFMdav5BSNtdVkc3kPMPQv22/m7VabcgaLePDWgEoXO9UfNa
0Z6inrYdpA1BWKjd4NDGILxpVeA1ljYFwbqmdehMOlvUO7ajfQCdG4SjPZoN
j6HzgzBm+zJfK20PwvXmlROX00Wi3oisXhvpkiDUO/rfpB9pRxC+7ab9AnD+
wei09WbmL7RzMK6L25k/1PyDscDjD5/7av7BeH1oVMJLNf9gpHY+sqrCIM5f
1Js6dGJt2hAM+7kCo542BmP04Da2L2hTMP7Y//WmnnS2qPdXs9nD6dxg1J28
PG4ynR+MDb9U/moObQ9GxwGRu4LoIlHPTxeYSJcEw/9GUHoW7QhG2fhbG7+m
dSFIOTXhaB7tHAI3xx8xBbQ+BEd8R688TruFYNS1Iz+epxGCa57iA6zmHwJL
xD7rP2r+IajzqM2379T8Q/DN7NVHqgzm/EW/4urX6tHZITgsTm8zOjcE80M/
2tGZzg/BK+3nkraLfrMe3BtFF4WgtrbBpktCcOjtrUP+tCMEI4O0Kw7nH4qr
d088N9POofATm+svaX0oan14wMP5h2J9Wce722iEokPAhnIHac9QHLpVp/Ep
2hCKeR+v+b2YNobiZcInz+6o+YfC/EL8hZq/6LfgSWvdEM4/FAeXRN2uQeeH
YvhHf//XiLaH4krs9IZt6CLR7+nZbt3pklDU/HTSkyG0IxTrssQFmtaFoX3F
Hq7etHMYDkZtHhhA68MwN7fT+zjaLQzP6377aQaNMGiPL3JozzDULJfquZE2
hOFAK7Fhpo1hGLbG1PIn2hSG32s97X+Ozhb9rD4z/lDzD4Pz9r/rP1TzD8Pa
5jM6v1bzD0O7Vb+OrjyU8xf9aogdD10SBt9uhc2b0Y4wPNvSQ9zhcP7h+HD7
TTuHo8bKRhHDaX041lbL+nIy7RYOD+0Hj0Y4Luel+oXSnuGY89nr5ETaEI5n
S/3XZdHGcKzZ/3TKWtoUjrZuc8K20Nnh2LfxUnYBnSv6NRy69TidHw5xtuZe
ou3hMO1F0k01/3B88sWPa/5R8w/H6m+a7Xun5h+Ooae2hFTz4PwjcKlv48Wf
0s4R8NmVtbklrY+A+DSe6Ey7RWC1p9U0kEYE2px4/bUn7RmBgl4L9s6gDREY
8mGDyPmLer/PyYymTRFIGCXOIJ0dAe1x+DI6NwLa5X09nS/qaQ8oaHsELl78
cfdhuigCs7UHtnRJBBxHlj8sph2i3t3G4o6a849E6+mLf3qh5h8JsZu5UX4Y
5x+JwUODX9eg3SLhWPRmZxMakYi/teBcO9ozEh8e59CGSHz4eNJGUe/FZfsk
2hSJC+Jy40NnR8K7ZN8rI50biX8mtq0dT+eLerE7z2bS9ki4Pm1+fxVdFIk9
81ZUzKNLIjHo+kf63bQjEufHRfX6idZFIS6q3MvfaOcoVP0nuOafav5R+GrO
7XYP1fyjoD1ue63mH4Xz4nRVGc75R8EQPuazerQhCo//tosrOOcfhVjvThPd
aJOoZ91fA3R2FHb/27btKDo3CgND1gyZSudH4bdSsSGn7aLehy8s5x+Fjy1O
7ma6JAo5b6LGL6EdUdC2i2tpXTR+WxHSehvtHI1Z1e4MOkDro/EocZKhkHaL
RsyrkzGXaESj5Wee3e6o+Udj19KjY5+q+UdjQJXOi/5T849GUfy31mojOP9o
RG9sN7ARnR2NKg3XzmxN50ZjZXaN6G50fjRaaLc7tD0a59pV8RxPF0Vjpti+
GOiSaDys/zBlEe0Q/bQNDq2LQfNdd6an084x2Nl6cuRKWh+D/usKl35Lu8Xg
XJ2e23fQiIH4NM0/SnvGQFytLb/ShhisaKndMXL+ot/qegdL1fxj8GNN6+8v
1PxjoF1+K43k/GPw9w+JP9Si80W/Zs8Km9B20U/7gNJFMdhx5OHa3nRJDPp1
nbl/GO2Iwa+bz12aROtiMV3f/4kP7RyLytoPJK2PxbKDPU+aaLdYNNNuGGnE
Ysemxu9X0Z6xmPbrxoLNtCEW2uuEvbQxFpHi9ugYbRL9Orz5+DydHYv8iUnH
/1Lzj4XY7ZU8VvOPxS/wffdWzV/023O5fpVRnH8sKl2fed6FLonF0nFFj1rQ
jlh8Xti/SmdaF4f8Pjubg3aOw9Q5vf4cQ+vjoD0Om067xUH7evvTiEOl44s7
RtCecdAu1ym0IQ59vNM+WkYb43Dm8pum62lTHKaMXNh3G50dh4ohz8sO0blx
+LLUt84ZOj8Oeu0BL22Pw7YLHiPuqPmLem+KKr1Q84/DvcABn5cfzfnHIezO
zt41aF08Kkxr4dWIdo7HkiLxg0Dr49Fbe+FKu8Xj9MLsYUNoxMPrZjnf8bRn
PO5ODjEZaIOoF/+2p5E2xqPJ84WT4mhTPH6YL27Q6ex4iLOfuZLOFfUqFQ/d
ROfHQ3s9vYu2x0Pbbh+li+KRPVe7I+L8Rb3MXRNuqPnH41R58Quo5p8A8W3P
KFPzT8CdR06bKo3h/BOQXWeJd13aLQGfpZePa0ojAVv/C8npQHsmoKd2gmmD
qPe19gKL809ASM0/06bQpgRot4tz6ewELH531B5C54p6YvuXTOcnoDDnwIps
2p6ASdoND12UgNvJa89upktEvc0trftpRwIa63M2nKR1JmxZXuXIRdrJhB5V
Y67+RTubcLtjheVPaBcTgrUHEOr8mKBrfPdMVc//29UE7fWXC+0m6onbF1fa
3YST7cce6krDhInf/lQ8gPYw4danXZ6PoT1FPe2NNO1lQqM9X5xeSBtM2Nx2
3Z0o2s8E9/XO4pTyfJtwol5So2V0pAlBfT7+fQNtMuG/H2Oe5tNWEzJdH1U/
TGeboF2OztA5ot6xu7eu0rkmTOjp9d89Os+Em9tPNXhB55tg1F7YjP2/C0S9
kT87atJ2E74/2qVaE7rQhO7dv2vVji4y4fjW+gN70MUmBGovDOkSE957iB0O
XWqC7XBSFx/aYUIDcTqNdJkJ2uNEE61LxHjx85hJOyXir8HiBpN2TkTggaLp
m2iXRHx606v+XlqfiLzJpzsdo10T0e1sr9G/0W6JODZAfMNp90QEzO/a/DGN
RLy78V2/t7RHIjImuExzGsf1F/0+PADn+idCnL2OLWhDIsbOTR7ZifZLRMm1
5/P60UbRT/sHdGQiXLQXMLQpEd89mjVlPm1NRFef30LD6WzRr3hAdjKdk4hF
/50evpTOTcTb0N5zc+m8RKQ9EBdsOl/0MzRZs58uEP3E9uYkbU+E9nr/d7ow
Edrjitt0keh37+33T+hi0W/6ouPv6ZJEbEwWG+jxXP9EdH499+uGtCMRRwOK
97jSZaLf7WHnu9K6JIirr20w7ZQEsbvJG0c7J6GeFlihXZKwcUHLPxfS+iSM
+XLbV7G0axK02+002i0JC+LEFYV2F/2eln+4gUYSxG76u520RxI6aT+AtGcS
7BUDrp+lvZIwOvrPsqu0IQmvc+ftfED7JSG13pVfX9HGJNS1DX9QcQLXPwkb
yh2sVIs2iXqug+yf09Yk/LFm97X2dHaSfH1I5yShzJpTaxidK+pt15/1ovOS
0LGFuGLT+UkyP0UXJMn8FG0X9br9e2UxXZiElK0BL1bTRUkyP0UXJ8n8FF0i
6h2+cvcEXZqEa51HlL9IO5JkfoouS5L5KVqXLPNTtFMy3LQHFhO5/skyP0W7
JMv8FK1Plvkp2lXUG1Cx0QDaLVnmp2j3ZJmfopEs81O0h6h3qsQ1ivZMht+H
F6pc/2SZn6INyTI/RfuJeuLykk8bk3HohLjg0JHJMj9Fm5Jlfoq2inrFXw24
R2cno9boqjOf0znJMj81ieufLPNTdJ6oN0vcIdL5yZh36Z5/W7ogWeanaHuy
zE/RhaKednroomQcnH4sYjZdnCzzU3RJssxP0aWiXkCH+TbakYyat3PNX9Fl
yTI/RevMMj9FO5lR/KJq+M+0sxlztS8w7WKW+Slab5b5KdrVDC0e8YZ2M+PA
0ylrP5rM9TfL/BQNs8xP0R5mmZ+iPc1wju62pS/tZZb5Kdpglvkp2s8s81O0
UdQrJz6BdKRZ5qdok1nmp2irWean6GwztO3KVjrHDI/3hpJ9dK5Z5qfoPLPM
T9H5ZnyiBcroAjPWWPo8ctB2s8xP0YVmmZ/y4vqb4bMy70YDutiMp9UavGlF
l5hlfoouNcv8FO0wo+Azy99j6TIztNevs2idReanaCeLzE/RzhZU/867zEq7
WPB1wwu1V9B6i8xP0a4WmZ+i3SyY/UXfSnba3QLHN9oPJtffIvNTtIdF5qdo
Twv27tICOlx/C7TXBxWncP0tMj9F+1lkfoo2WlBN28DQkRZo6Z5etMki81O0
1SLzU3S2Bd4/X2jrS+dY8I/74KHBdK5F5qfoPIvMT9H5Fpmfogss0K4239N2
C7Sv8x660CLzU3SRRean6GILvhoqPoB0iQWtDgXGPqJLLTI/RTssMj81letv
weNfry6qT+tSEDtoZFpz2ilF5qdo5xSZn6JdUjBw0t7o0bQ+BVqcZxrtmiLz
U7RbisxP0e6i3vWlqRYaKWipvYClPVJkfor2TJH5KdpL1JtjXHaQNqRA7Fa2
n6L9UmR+ijamyPwUHSnqaYEo2pSCIu/DB3XTuP4pMj9FZ6fI/BSdI+qFtN7W
hs5NQYv7q051p/NSZH6Kzk+R+Sm6QNR7U+mAN21PQbQx4nIAXZgi81N0UYrM
T9HFKTI/RZek4Nyr8bc20qUpMj9FO1JkfoouS5H5KVqXiuYJbo4/aKdUmZ+i
nVNlfop2SZX5qelc/1REVa7+b23aNRUfxYpvNO2WKvNTtHuqzE/REPUy71cZ
QXukYrr2QIL2TJX5KdorVeanaIOoV1fs8Gi/VOxI795pMW1MlfkpOjJV5qdo
k6invSCgramoXKtOvxN0dqrMT9E5qTI/ReeKes3ECaTzUjHtK8eIf+n8VJmf
msH1T5X5Kdou6m2Z1qcVXZiKfPHr2IUuSpX5Kbo4Vean6JJUhHdyHz6TLk1F
pbzvfRfQjlSZn6LLUmV+itZZoV2Nl9NOVkztkBL8De1slfkp2sUq81O03irz
U7SrFdrP4RXazSrzU7S7VeanaFhlfmom19+KCn372ZxpT6vMT9FeVpmfog1W
mZ+i/azwOt7wq6G00Yp7PTN3TaAjrTI/RZusMj9FW63Q4lDxdLYV2uPdDDrH
KvNTdK5V5qfoPCvKay9k6HwrsocN+fUnusAq81O03SrzU3ShFZOn7TjykC6y
4k5R02uv6WKrzE/N4vpbZX6KLrVCe53fjHZYoT2ecKPLrDI/RevSZH6KdkpD
OX//K1Np5zQs/lNsqGmXNJmfovVpMj9Fu6Zh0pMhd5fQbmm4Pbeg3DraPU3m
p2ikyfwU7ZGGLZHNnhXSnmnQbq8v015pMj9FG9Jkfor2S5P5KdqYhqywoIbV
DVz/NJmfok1pMj9FW9NkforOTsOtd6NcB9E5aTI/ReemyfwUnZcm81N0fhq0
eG0MXZAG7XWhlbanyfwUXZgm81N0kahX9aMBP9LFadC+zUfokjSZn6JL02R+
inaIel/eEmeE658Go9NE/5e0Ll3mp7y5/ukyP0U7p6O7uHroaZd0aI+7v6D1
6TI/Rbumy/wU7SbqrV/tN5l2T0eD+p+Y59BIl/kp2iNd5qdoT1HPNSosi/ZK
R+DaB9lf04Z0mZ+i/dJlfoo2inraCwU6Mh3HWpxcc542pcv8FG1Nl/kpOlvU
E5eTd3ROOj79YcPmKrO5/ukyP0Xnpcv8FJ2fLvNTdEE6ArqY9oK2p8v8FF2Y
LvNTdFG6zE/RxaLeAW1DyPVPl/kpujRd5qdoR7rMT9Flot7AHr9to3UZMj9F
O2XI/BTtnCHzU7RLBhadrnvjDq3PwNt+qa+f0q4ZMj/lw/XPkPkp2l3UG/v0
QSMaGfDUvtC0R4bMT9GeGTI/RXuJetrjHdqQgY2jUdub9suQ+SnamCHzU3Rk
BhZoN9i0KQNvLjXS59DWDJmforMzZH6KzsmA/V5qzZ/o3AyMmfG63Tk6L0Pm
p+j8DJmfogsyoG1PXtP2DHx7+1KPynO4/hkyP0UXZcj8FF2cAf+XWmSC65+B
sgXiBNGlGTI/RTsyZH6KLsuQ+SlaZ8OoZ1njQ2knm8xP0c42mZ+iXWwyP0Xr
bdB+7bbQrjaZn6LdbDI/RbvbZH6Khg2vynksukl72GR+iva0yfwU7WWT+Slf
rr8NYvcS/SntZ8PV98uXt6SNNpmfoiNtMj9Fm2z48LqAttrw4faHzrbJ/BSd
Y5P5KTrXhpcrxYaGzrPBXF1L6HH9bTI/RRfYZH6Kttswosn+3MN0oQ1XlrU9
eIYussn8FF1sk/kpusQG7X8XfEGX2qB9fcvP5frbZH6KLrPJ/BSty8SLL0L2
t6OdMpG8QXwgaedMmZ+iXTJlforWZ2L47jEnfWjXTBS3OXrTSLtlyvwU7Z4p
81M0MmV+ivbIhBbf2UR7Zsr8FO2VKfNTtCFT5qdoP1GvR/S7G7QxU+an6MhM
mZ+iTZkyPzWP6y/q2SdVqUdnZ8r8FJ2TKfNTdG6mzE/ReaLeh4AU1z8TH7bT
dEGmzE/R9kyZn6ILRb1zNZqZ6aJM1Bic2HcJXZwp81N0SabMT9Glot6khx0O
0I5MzPllxohCuixT5qdoXZbMT9FOWWh7o7D3U9o5C/vGiztI2iVL5qf8uP5Z
Mj9Fu4p6vhuHtabdsvDJtXq+3Wj3LJmfopEl81O0h6j3MHGSgfbMgs/sZ0GL
aK8smZ+iDVkyP0X7iXqhM31W0sYsFNw/F/8tHZkl81O0KUvmp2hrlsxP0dlZ
qB60NeManZMl81N0bpbMT9F5WTI/NZ/rL+ppLwzogiyZn6LtWTI/RRdmyfwU
XSTqJYgTShdnyfwUXZIl81N0aZbMT9EOUU/cPprosiyZn6J1i2V+inZaLPNT
tPNieGd9dmQv7bIY/1QQGz5av1jmp2jXxTI/Rbstxu66b888pt0XY1DGwntv
aSyW+Sl/rv9imZ8S/h+xeLpe
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 4.048},
PlotRange->{{0., 1001.}, {4.048, 4.1036}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.5532630098764825`*^9, 3.5532630333608255`*^9}, {
3.553263841719061*^9, 3.5532638710697393`*^9}, 3.5532675268958406`*^9,
3.5532704479109135`*^9, {3.553270587819916*^9, 3.5532705971404486`*^9}, {
3.5532707174993334`*^9, 3.5532707390785675`*^9}, 3.553270790440505*^9,
3.553270827957651*^9, 3.5532709141645813`*^9, {3.553270981479432*^9,
3.553270998487405*^9}, 3.553271101755311*^9, 3.5532711931245375`*^9, {
3.5532713239370193`*^9, 3.553271345318242*^9}, 3.553271883971051*^9, {
3.553273778912436*^9, 3.553273790630106*^9}, 3.5532738313374343`*^9, {
3.553273874197886*^9, 3.5532738781861143`*^9}, {3.5532740663208747`*^9,
3.5532741195979223`*^9}, {3.553274155154956*^9, 3.553274178104268*^9}, {
3.553274377124652*^9, 3.5532743876602545`*^9}, {3.5532751278505907`*^9,
3.5532751601534386`*^9}, {3.553275207023119*^9, 3.5532752161036386`*^9}, {
3.5532752848715715`*^9, 3.553275296412232*^9}, {3.5532759945051603`*^9,
3.5532760057288027`*^9}, {3.5532772100686865`*^9, 3.553277226895649*^9}, {
3.5532781189936743`*^9, 3.5532781302033157`*^9}, {3.5568342636633606`*^9,
3.5568342968712606`*^9}, {3.5568343368235455`*^9, 3.556834568374789*^9},
3.5568347797968817`*^9, 3.556935164656154*^9}],
Cell[BoxData[
RowBox[{"{", "\<\"y\"\>", "}"}]], "Output",
CellChangeTimes->{{3.5532630098764825`*^9, 3.5532630333608255`*^9}, {
3.553263841719061*^9, 3.5532638710697393`*^9}, 3.5532675268958406`*^9,
3.5532704479109135`*^9, {3.553270587819916*^9, 3.5532705971404486`*^9}, {
3.5532707174993334`*^9, 3.5532707390785675`*^9}, 3.553270790440505*^9,
3.553270827957651*^9, 3.5532709141645813`*^9, {3.553270981479432*^9,
3.553270998487405*^9}, 3.553271101755311*^9, 3.5532711931245375`*^9, {
3.5532713239370193`*^9, 3.553271345318242*^9}, 3.553271883971051*^9, {
3.553273778912436*^9, 3.553273790630106*^9}, 3.5532738313374343`*^9, {
3.553273874197886*^9, 3.5532738781861143`*^9}, {3.5532740663208747`*^9,
3.5532741195979223`*^9}, {3.553274155154956*^9, 3.553274178104268*^9}, {
3.553274377124652*^9, 3.5532743876602545`*^9}, {3.5532751278505907`*^9,
3.5532751601534386`*^9}, {3.553275207023119*^9, 3.5532752161036386`*^9}, {
3.5532752848715715`*^9, 3.553275296412232*^9}, {3.5532759945051603`*^9,
3.5532760057288027`*^9}, {3.5532772100686865`*^9, 3.553277226895649*^9}, {
3.5532781189936743`*^9, 3.5532781302033157`*^9}, {3.5568342636633606`*^9,
3.5568342968712606`*^9}, {3.5568343368235455`*^9, 3.556834568374789*^9},
3.5568347797968817`*^9, 3.5569351646591544`*^9}],
Cell[BoxData[
RowBox[{"{", "\<\"v\"\>", "}"}]], "Output",
CellChangeTimes->{{3.5532630098764825`*^9, 3.5532630333608255`*^9}, {
3.553263841719061*^9, 3.5532638710697393`*^9}, 3.5532675268958406`*^9,
3.5532704479109135`*^9, {3.553270587819916*^9, 3.5532705971404486`*^9}, {
3.5532707174993334`*^9, 3.5532707390785675`*^9}, 3.553270790440505*^9,
3.553270827957651*^9, 3.5532709141645813`*^9, {3.553270981479432*^9,
3.553270998487405*^9}, 3.553271101755311*^9, 3.5532711931245375`*^9, {
3.5532713239370193`*^9, 3.553271345318242*^9}, 3.553271883971051*^9, {
3.553273778912436*^9, 3.553273790630106*^9}, 3.5532738313374343`*^9, {
3.553273874197886*^9, 3.5532738781861143`*^9}, {3.5532740663208747`*^9,
3.5532741195979223`*^9}, {3.553274155154956*^9, 3.553274178104268*^9}, {
3.553274377124652*^9, 3.5532743876602545`*^9}, {3.5532751278505907`*^9,
3.5532751601534386`*^9}, {3.553275207023119*^9, 3.5532752161036386`*^9}, {
3.5532752848715715`*^9, 3.553275296412232*^9}, {3.5532759945051603`*^9,
3.5532760057288027`*^9}, {3.5532772100686865`*^9, 3.553277226895649*^9}, {
3.5532781189936743`*^9, 3.5532781302033157`*^9}, {3.5568342636633606`*^9,
3.5568342968712606`*^9}, {3.5568343368235455`*^9, 3.556834568374789*^9},
3.5568347797968817`*^9, 3.5569351646611547`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Remove", "[", "\"\<Global`*\>\"", "]"}], "\n",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Gaussian", "[",
RowBox[{"x_", ",", "A_", ",", "xo_", ",", "\[Sigma]_"}], "]"}], "=",
RowBox[{"A", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
RowBox[{"0.5",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-", "xo"}], ")"}], "2"]}],
SuperscriptBox["\[Sigma]", "2"]]}]]}]}], ";"}], "\n"}], "\n",
RowBox[{
RowBox[{"data", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"v", "[",
RowBox[{"[", "i", "]"}], "]"}], ",",
RowBox[{"y", "[",
RowBox[{"[", "i", "]"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "1001"}], "}"}]}], "]"}]}], ";"}], "\n",
RowBox[{"function", "=",
RowBox[{
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "A0", ",", "4.09443", ",", "A2"}], "]"}], "+",
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "A3", ",", "4.09276", ",", "A5"}], "]"}], "+",
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "A6", ",", "4.09238", ",", "A8"}], "]"}], "+",
"A9"}]}], "\n",
RowBox[{
RowBox[{"Dimensions", "[", "data", "]"}], "\n"}], "\n",
RowBox[{
RowBox[{"nlm", "=",
RowBox[{"FindFit", "[",
RowBox[{"data", ",", "function", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"A0", ",", "300"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A1", ",", "4.09443"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A2", ",", ".0007"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A3", ",", "300"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A4", ",", "4.09276"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A5", ",", ".0018"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A6", ",", "300"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A7", ",", "4.09238"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A8", ",", ".0008"}], "}"}], ",",
RowBox[{"{",
RowBox[{"A9", ",", "20"}], "}"}]}], "}"}], ",", "x", ",",
RowBox[{"MaxIterations", "\[Rule]", "\[Infinity]"}]}], "]"}]}], "\n",
RowBox[{"(*",
RowBox[{
RowBox[{"FIT", "[", "x_", "]"}], "=",
RowBox[{"nlm", "[", "\"\<BestFit\>\"", "]"}]}], "*)"}]}], "\n",
RowBox[{
RowBox[{
RowBox[{"FIT", "[", "x_", "]"}], "=",
RowBox[{"function", "/.", "nlm"}]}], "\n",
RowBox[{"(*",
RowBox[{
RowBox[{"A", "=",
RowBox[{
RowBox[{
RowBox[{"nlm", "[", "\"\<BestFitParameters\>\"", "]"}], "\n", "res"}],
"=",
RowBox[{"nlm", "[", "\"\<FitResiduals\>\"", "]"}]}]}], ";", "\n",
RowBox[{"chi", "=",
RowBox[{"nlm", "[", "\"\<EstimatedVariance\>\"", "]"}]}]}], "*)"}], "\n",
RowBox[{"(*",
RowBox[{"\[Chi]sqred", "=",
RowBox[{"chi", "/",
RowBox[{"(",
RowBox[{"1001", "-", "7"}], ")"}]}]}], "*)"}], "\n",
RowBox[{"(*",
RowBox[{"\[Chi]sq", "=",
RowBox[{"(",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"y", "[",
RowBox[{"[", "i", "]"}], "]"}], "-",
RowBox[{"FIT", "[",
RowBox[{"v", "[",
RowBox[{"[", "i", "]"}], "]"}], "]"}]}],
SuperscriptBox[")", "2"]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "1001"}], "}"}]}], "]"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"StandardDeviation", "[", "y", "]"}], "^", "2"}], ")"}]}],
")"}]}], "*)"}]}], "\n",
RowBox[{
RowBox[{"g1", "[", "x_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "A0", ",", "A1", ",", "A2"}], "]"}], "+",
RowBox[{"A9", "/", "3"}]}], "/.", "nlm"}]}], "\n",
RowBox[{
RowBox[{"g2", "[", "x_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "A3", ",", "A4", ",", "A5"}], "]"}], "+",
RowBox[{"A9", "/", "3"}]}], "/.", "nlm"}]}], "\n",
RowBox[{
RowBox[{"g3", "[", "x_", "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"Gaussian", "[",
RowBox[{"x", ",", "A6", ",", "A7", ",", "A8"}], "]"}], "+",
RowBox[{"A9", "/", "3"}]}], "/.", "nlm"}]}], "\n",
RowBox[{"p1", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"FIT", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"Min", "[", "v", "]"}], ",",
RowBox[{"Max", "[", "v", "]"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Thick", ",", "Red"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], "\n",
RowBox[{"p2", "=",
RowBox[{"ListLinePlot", "[",
RowBox[{"data", ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], "\n",
RowBox[{"p3", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"g1", "[", "x", "]"}], ",",
RowBox[{"g2", "[", "x", "]"}], ",",
RowBox[{"g3", "[", "x", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"Min", "[", "v", "]"}], ",",
RowBox[{"Max", "[", "v", "]"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Yellow", ",", "Green"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]}], "\n",
RowBox[{"p4", "=",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"g1", "[", "x", "]"}], "+",
RowBox[{"g2", "[", "x", "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"Min", "[", "v", "]"}], ",",
RowBox[{"Max", "[", "v", "]"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], "\n",
RowBox[{"ListLinePlot", "[", "res", "]"}], "\n",
RowBox[{"Show", "[",
RowBox[{"p2", ",", "p1", ",", "p3", ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Large"}]}], "]"}], "\n"}], "Input",
CellChangeTimes->{{3.5532675542764072`*^9, 3.553267579306839*^9}, {
3.553268678971736*^9, 3.5532686826189446`*^9}, {3.553268789120036*^9,
3.55326898237809*^9}, {3.5532690158710055`*^9, 3.553269019928238*^9}, {
3.553269066760916*^9, 3.553269069364065*^9}, {3.5532705165318384`*^9,
3.553270540968236*^9}, {3.5532710145713243`*^9, 3.5532710162304196`*^9},
3.553271081860173*^9, 3.553271143540701*^9, {3.5532713839644527`*^9,
3.5532716222270803`*^9}, {3.553271652359804*^9, 3.553271671412894*^9}, {
3.5532717071269364`*^9, 3.5532717110741625`*^9}, {3.5532717453841248`*^9,
3.5532717665703363`*^9}, {3.5532717999762473`*^9, 3.553271800347268*^9}, {
3.5532718933465877`*^9, 3.553271984348793*^9}, {3.553272026744218*^9,
3.553272269526104*^9}, {3.5532723099914184`*^9, 3.5532723856647468`*^9},
3.553273818379693*^9, {3.5532738881576843`*^9, 3.5532740430665445`*^9}, {
3.5532741343187637`*^9, 3.5532741399210844`*^9}, {3.5532744138887544`*^9,
3.5532745406260033`*^9}, {3.5532745948051023`*^9,
3.5532746014264812`*^9}, {3.5532748104684377`*^9,
3.5532748267793703`*^9}, {3.5532750011893463`*^9, 3.5532750084047585`*^9},
3.5532753921647086`*^9, {3.553275574338128*^9, 3.553275743932829*^9}, {
3.5532758535851*^9, 3.553275857715337*^9}, {3.5532760449970484`*^9,
3.553276050366356*^9}, {3.5532762154257965`*^9, 3.553276313979433*^9}, {
3.5532763619011745`*^9, 3.5532764805779624`*^9}, {3.5532765196941996`*^9,
3.553276622446077*^9}, {3.5532766618253293`*^9, 3.5532766882658415`*^9}, {
3.553276723416852*^9, 3.5532767238448763`*^9}, {3.5532767562127275`*^9,
3.5532767976480975`*^9}, {3.55327700644604*^9, 3.553277006873065*^9}, {
3.5532772445636597`*^9, 3.553277265832876*^9}, {3.5532775093538046`*^9,
3.55327756382592*^9}, {3.553277782162409*^9, 3.5532779371652746`*^9}, {
3.553278147894327*^9, 3.553278159970018*^9}, {3.553278261186807*^9,
3.553278344913596*^9}, {3.553278460690218*^9, 3.5532787633695307`*^9}, {
3.5532788179676533`*^9, 3.5532788185846887`*^9}, {3.5532788718577356`*^9,
3.553278914751189*^9}, {3.5532789496421847`*^9, 3.55327900392929*^9}, {
3.5532790356391034`*^9, 3.5532790669368935`*^9}, {3.5532791086342783`*^9,
3.553279109934353*^9}, {3.5532791640604486`*^9, 3.5532792227308044`*^9}, {
3.5532792666113143`*^9, 3.5532793401255193`*^9}, {3.5532793943996234`*^9,
3.5532794102605305`*^9}, {3.553279455779134*^9, 3.55327952563713*^9}, {
3.556832805186941*^9, 3.5568328547607765`*^9}, 3.55683289801725*^9, {
3.556832960229809*^9, 3.556832979726924*^9}, {3.5568331956412735`*^9,
3.556833376515619*^9}, {3.5568334080334215`*^9, 3.556833456361186*^9}, {
3.5568335469843693`*^9, 3.5568335618422194`*^9}, {3.5568336568336525`*^9,
3.5568336976049843`*^9}, {3.5568346024657393`*^9,
3.5568346954960604`*^9}, {3.556834822136304*^9, 3.5568348494448657`*^9}, {
3.5568372469058833`*^9, 3.556837333774852*^9}, {3.5568374136724215`*^9,
3.556837417948666*^9}, {3.5568374745849056`*^9, 3.5568374748049183`*^9}, {
3.5568384868368034`*^9, 3.5568384938372035`*^9}, {3.556838553357608*^9,
3.556838575411869*^9}, {3.5568386196333985`*^9, 3.5568386462739224`*^9}, {
3.5568386970988293`*^9, 3.5568387498018436`*^9}, {3.5568388645364065`*^9,
3.55683888942983*^9}, {3.556838941315798*^9, 3.556838967617302*^9}, {
3.5568390530081863`*^9, 3.5568390671419945`*^9}, {3.556839113653655*^9,
3.5568391398681545`*^9}, {3.556839188992964*^9, 3.55683918944499*^9}, {
3.556839223593943*^9, 3.556839276650978*^9}, {3.556839362054863*^9,
3.5568393680462055`*^9}, {3.5568394550071793`*^9, 3.556839487732051*^9}, {
3.5568395691187057`*^9, 3.556839633146368*^9}, {3.5569351893855686`*^9,
3.5569352854190617`*^9}, {3.5569353314856963`*^9,
3.5569353925401883`*^9}, {3.5569355685942583`*^9,
3.5569356054473658`*^9}, {3.5569356478597918`*^9, 3.5569356487418423`*^9},
3.556935710607381*^9, {3.5569357678246536`*^9, 3.556935771818882*^9}, {
3.556936557217681*^9, 3.556936562833691*^9}, {3.5569398415682096`*^9,
3.5569398718969955`*^9}, {3.556939968302302*^9, 3.5569400030682907`*^9}, {
3.55694011957491*^9, 3.5569402650391765`*^9}, 3.556940661059433*^9, {
3.55694074226845*^9, 3.556940759836759*^9}, {3.556941985512785*^9,
3.5569419928676624`*^9}, {3.5569420679976945`*^9,
3.5569420878958325`*^9}, {3.55694213155433*^9, 3.556942147677252*^9}}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"Remove", "::", "rmptc"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Symbol \[NoBreak]\\!\\(v\\)\[NoBreak] is Protected and \
cannot be removed. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\
\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/Remove/rmptc\\\", ButtonNote -> \
\\\"Remove::rmptc\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.556940252582733*^9, 3.556940265912778*^9},
3.5569407615308347`*^9, 3.5569419953935432`*^9, 3.5569420886448755`*^9,
3.556942149095333*^9}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"Remove", "::", "rmptc"}], "MessageName"],
RowBox[{
":", " "}], "\<\"Symbol \[NoBreak]\\!\\(y\\)\[NoBreak] is Protected and \
cannot be removed. \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\
\\\"Link\\\", ButtonFrame->None, \
ButtonData:>\\\"paclet:ref/message/Remove/rmptc\\\", ButtonNote -> \
\\\"Remove::rmptc\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{{3.556940252582733*^9, 3.556940265912778*^9},
3.5569407615308347`*^9, 3.5569419953935432`*^9, 3.5569420886448755`*^9,
3.556942149102333*^9}],
Cell[BoxData[
RowBox[{"A9", "+",
RowBox[{"A0", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
RowBox[{"0.5`", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4.09443`"}], "+", "x"}], ")"}], "2"]}],
SuperscriptBox["A2", "2"]]}]]}], "+",
RowBox[{"A3", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
RowBox[{"0.5`", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4.09276`"}], "+", "x"}], ")"}], "2"]}],
SuperscriptBox["A5", "2"]]}]]}], "+",
RowBox[{"A6", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
RowBox[{"0.5`", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4.09238`"}], "+", "x"}], ")"}], "2"]}],
SuperscriptBox["A8", "2"]]}]]}]}]], "Output",
CellChangeTimes->{{3.5569402525867333`*^9, 3.556940265928378*^9},
3.5569407615418353`*^9, 3.556941995401544*^9, 3.556942088652876*^9,
3.5569421491053333`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1001", ",", "2"}], "}"}]], "Output",
CellChangeTimes->{{3.5569402525867333`*^9, 3.556940265928378*^9},
3.5569407615418353`*^9, 3.556941995401544*^9, 3.556942088652876*^9,
3.5569421491073337`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"A0", "\[Rule]", "199.80997415095`"}], ",",
RowBox[{"A1", "\[Rule]", "4.09443`"}], ",",
RowBox[{"A2", "\[Rule]", "0.0012573211020658838`"}], ",",
RowBox[{"A3", "\[Rule]", "129.77262282512498`"}], ",",
RowBox[{"A4", "\[Rule]", "4.09276`"}], ",",
RowBox[{"A5", "\[Rule]", "0.0023759120369836128`"}], ",",
RowBox[{"A6", "\[Rule]",
RowBox[{"-", "66.60331018615551`"}]}], ",",
RowBox[{"A7", "\[Rule]", "4.09238`"}], ",",
RowBox[{"A8", "\[Rule]", "0.0014304295711943446`"}], ",",
RowBox[{"A9", "\[Rule]", "20.193605126848972`"}]}], "}"}]], "Output",
CellChangeTimes->{{3.5569402525867333`*^9, 3.556940265928378*^9},
3.5569407615418353`*^9, 3.556941995401544*^9, 3.556942088652876*^9,
3.5569421491773376`*^9}],
Cell[BoxData[
RowBox[{"20.193605126848972`", "\[VeryThinSpace]", "+",
RowBox[{"199.80997415095`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "316284.2713885388`"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4.09443`"}], "+", "x"}], ")"}], "2"]}]]}], "+",
RowBox[{"129.77262282512498`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "88574.61815254271`"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4.09276`"}], "+", "x"}], ")"}], "2"]}]]}], "-",
RowBox[{"66.60331018615551`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "244363.8984150482`"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "4.09238`"}], "+", "x"}], ")"}], "2"]}]]}]}]], "Output",
CellChangeTimes->{{3.5569402525867333`*^9, 3.556940265928378*^9},
3.5569407615418353`*^9, 3.556941995401544*^9, 3.556942088652876*^9,
3.556942149180338*^9}],
Cell[BoxData[