Skip to content

Latest commit

 

History

History
378 lines (276 loc) · 15.9 KB

onnxruntime_custom_ops.md

File metadata and controls

378 lines (276 loc) · 15.9 KB

ONNX Runtime Custom Ops

SoftNMS

Description

Perform soft NMS on boxes with scores. Read Soft-NMS -- Improving Object Detection With One Line of Code for detail.

Parameters

Type Parameter Description
float iou_threshold IoU threshold for NMS
float sigma hyperparameter for gaussian method
float min_score score filter threshold
int method method to do the nms, (0: naive, 1: linear, 2: gaussian)
int offset boxes width or height is (x2 - x1 + offset). (0 or 1)

Inputs

boxes: T
Input boxes. 2-D tensor of shape (N, 4). N is the number of boxes.
scores: T
Input scores. 1-D tensor of shape (N, ).

Outputs

dets: T
Output boxes and scores. 2-D tensor of shape (num_valid_boxes, 5), [[x1, y1, x2, y2, score], ...]. num_valid_boxes is the number of valid boxes.
indices: tensor(int64)
Output indices. 1-D tensor of shape (num_valid_boxes, ).

Type Constraints

  • T:tensor(float32)

RoIAlign

Description

Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors.

Parameters

Type Parameter Description
int output_height height of output roi
int output_width width of output roi
float spatial_scale used to scale the input boxes
int sampling_ratio number of input samples to take for each output sample. 0 means to take samples densely for current models.
str mode pooling mode in each bin. avg or max
int aligned If aligned=0, use the legacy implementation in MMDetection. Else, align the results more perfectly.

Inputs

input: T
Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.
rois: T
RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.

Outputs

feat: T
RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].

Type Constraints

  • T:tensor(float32)

NMS

Description

Filter out boxes has high IoU overlap with previously selected boxes.

Parameters

Type Parameter Description
float iou_threshold The threshold for deciding whether boxes overlap too much with respect to IoU. Value range [0, 1]. Default to 0.
int offset 0 or 1, boxes' width or height is (x2 - x1 + offset).

Inputs

bboxes: T
Input boxes. 2-D tensor of shape (num_boxes, 4). num_boxes is the number of input boxes.
scores: T
Input scores. 1-D tensor of shape (num_boxes, ).

Outputs

indices: tensor(int32, Linear)
Selected indices. 1-D tensor of shape (num_valid_boxes, ). num_valid_boxes is the number of valid boxes.

Type Constraints

  • T:tensor(float32)

grid_sampler

Description

Perform sample from input with pixel locations from grid.

Parameters

Type Parameter Description
int interpolation_mode Interpolation mode to calculate output values. (0: bilinear , 1: nearest)
int padding_mode Padding mode for outside grid values. (0: zeros, 1: border, 2: reflection)
int align_corners If align_corners=1, the extrema (-1 and 1) are considered as referring to the center points of the input's corner pixels. If align_corners=0, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic.

Inputs

input: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
grid: T
Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW is the height and width of offset and output.

Outputs

output: T
Output feature; 4-D tensor of shape (N, C, outH, outW).

Type Constraints

  • T:tensor(float32, Linear)

CornerPool

Description

Perform CornerPool on input features. Read CornerNet -- Detecting Objects as Paired Keypoints for more details.

Parameters

Type Parameter Description
int mode corner pool mode, (0: top, 1: bottom, 2: left, 3: right)

Inputs

input: T
Input features. 4-D tensor of shape (N, C, H, W). N is the batch size.

Outputs

output: T
Output the pooled features. 4-D tensor of shape (N, C, H, W).

Type Constraints

  • T:tensor(float32)

cummax

Description

Returns a tuple (values, indices) where values is the cumulative maximum elements of input in the dimension dim. And indices is the index location of each maximum value found in the dimension dim. Read torch.cummax for more details.

Parameters

Type Parameter Description
int dim the dimension to do the operation over

Inputs

input: T
The input tensor with various shapes. Tensor with empty element is also supported.

Outputs

output: T
Output the cumulative maximum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.
indices: tensor(int64)
Output the index location of each cumulative maximum value found in the dimension `dim`, with the same shape as `input`.

Type Constraints

  • T:tensor(float32)

cummin

Description

Returns a tuple (values, indices) where values is the cumulative minimum elements of input in the dimension dim. And indices is the index location of each minimum value found in the dimension dim. Read torch.cummin for more details.

Parameters

Type Parameter Description
int dim the dimension to do the operation over

Inputs

input: T
The input tensor with various shapes. Tensor with empty element is also supported.

Outputs

output: T
Output the cumulative minimum elements of `input` in the dimension `dim`, with the same shape and dtype as `input`.
indices: tensor(int64)
Output the index location of each cumulative minimum value found in the dimension `dim`, with the same shape as `input`.

Type Constraints

  • T:tensor(float32)

MMCVModulatedDeformConv2d

Description

Perform Modulated Deformable Convolution on input feature, read Deformable ConvNets v2: More Deformable, Better Results for detail.

Parameters

Type Parameter Description
list of ints stride The stride of the convolving kernel. (sH, sW)
list of ints padding Paddings on both sides of the input. (padH, padW)
list of ints dilation The spacing between kernel elements. (dH, dW)
int deformable_groups Groups of deformable offset.
int groups Split input into groups. input_channel should be divisible by the number of groups.

Inputs

inputs[0]: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.
inputs[1]: T
Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
inputs[2]: T
Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
inputs[3]: T
Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).
inputs[4]: T, optional
Input bias; 1-D tensor of shape (output_channel).

Outputs

outputs[0]: T
Output feature; 4-D tensor of shape (N, output_channel, outH, outW).

Type Constraints

  • T:tensor(float32, Linear)

MMCVDeformConv2d

Description

Perform Deformable Convolution on input feature, read Deformable Convolutional Network for detail.

Parameters

Type Parameter Description
list of ints stride The stride of the convolving kernel. (sH, sW)
list of ints padding Paddings on both sides of the input. (padH, padW)
list of ints dilation The spacing between kernel elements. (dH, dW)
int deformable_group Groups of deformable offset.
int group Split input into groups. input_channel should be divisible by the number of groups.
int im2col_step DeformableConv2d use im2col to compute convolution. im2col_step is used to split input and offset, reduce memory usage of column.

Inputs

inputs[0]: T
Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.
inputs[1]: T
Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW is the height and width of weight, outH and outW is the height and width of offset and output.
inputs[2]: T
Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).

Outputs

outputs[0]: T
Output feature; 4-D tensor of shape (N, output_channel, outH, outW).

Type Constraints

  • T:tensor(float32, Linear)