We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
(this library, plus any other relevant software, e.g. bokeh, python, notebook, OS, browser, etc should be added within the dropdown below.)
Using Python 3.12.7 environment at /home/phil/.local/share/hatch/env/virtual/dask millions of cells/cMqPOBoB/dask millions of cells Package Version ------------------ ----------- asttokens 2.4.1 bleach 6.2.0 bokeh 3.6.1 certifi 2024.8.30 charset-normalizer 3.4.0 colorcet 3.1.0 comm 0.2.2 contourpy 1.3.1 cycler 0.12.1 debugpy 1.8.8 decorator 5.1.1 executing 2.1.0 fonttools 4.55.0 holoviews 1.20.0 idna 3.10 ipykernel 6.29.5 ipython 8.29.0 ipywidgets 8.1.5 jedi 0.19.2 jinja2 3.1.4 jupyter-client 8.6.3 jupyter-core 5.7.2 jupyterlab-widgets 3.0.13 kiwisolver 1.4.7 linkify-it-py 2.0.3 markdown 3.7 markdown-it-py 3.0.0 markupsafe 3.0.2 matplotlib 3.9.2 matplotlib-inline 0.1.7 mdit-py-plugins 0.4.2 mdurl 0.1.2 mizani 0.13.0 nest-asyncio 1.6.0 numpy 2.1.3 packaging 24.2 pandas 2.2.3 panel 1.5.4 param 2.1.1 parso 0.8.4 patsy 1.0.1 pexpect 4.9.0 pillow 11.0.0 platformdirs 4.3.6 plotnine 0.14.1 prompt-toolkit 3.0.48 psutil 6.1.0 ptyprocess 0.7.0 pure-eval 0.2.3 pygments 2.18.0 pyparsing 3.2.0 python-dateutil 2.9.0.post0 pytz 2024.2 pyviz-comms 3.0.3 pyyaml 6.0.2 pyzmq 26.2.0 requests 2.32.3 scipy 1.14.1 six 1.16.0 stack-data 0.6.3 statsmodels 0.14.4 tornado 6.4.1 tqdm 4.67.0 traitlets 5.14.3 typing-extensions 4.12.2 tzdata 2024.2 uc-micro-py 1.0.3 urllib3 2.2.3 wcwidth 0.2.13 webencodings 0.5.1 widgetsnbextension 4.0.13 xyzservices 2024.9.0
When using multiple kvars, the category order is ignored:
import pandas as pd import holoviews as hv hv.extension('bokeh') cells_dtype = pd.CategoricalDtype(pd.array(["~1M", "~10M", "~100M"], dtype="string"), ordered=True) df = pd.DataFrame(dict( cells=cells_dtype.categories.astype(cells_dtype), time=pd.array([2.99, 18.5, 835.2]), function=pd.array(["read", "read", "read"]), )) hv.Bars(df, ["function", "cells"], ["time"])
>>> df["cells"] 0 ~1M 1 ~10M 2 ~100M Name: cells, dtype: category Categories (3, string): [~1M < ~10M < ~100M]
The text was updated successfully, but these errors were encountered:
Sounds reasonable. I think the correct place to implement this is around here:
holoviews/holoviews/element/util.py
Lines 147 to 164 in c227510
Sorry, something went wrong.
No branches or pull requests
ALL software version info
(this library, plus any other relevant software, e.g. bokeh, python, notebook, OS, browser, etc should be added within the dropdown below.)
Software Version Info
Description of expected behavior and the observed behavior
When using multiple kvars, the category order is ignored:
Complete, minimal, self-contained example code that reproduces the issue
Stack traceback and/or browser JavaScript console output
>>> df["cells"] 0 ~1M 1 ~10M 2 ~100M Name: cells, dtype: category Categories (3, string): [~1M < ~10M < ~100M]
Screenshots or screencasts of the bug in action
The text was updated successfully, but these errors were encountered: