-
Notifications
You must be signed in to change notification settings - Fork 2
/
LBPO.py
539 lines (426 loc) · 22 KB
/
LBPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
'''
Code build on top of PPO from the spinning-up repository.
'''
import numpy as np
import gym
import time
import core
import sys
import safety_gym
import torch
from torch.optim import Adam
import torch.nn.functional as F
from torch.autograd import Variable
from ppo_utils.logx import EpochLogger
from ppo_utils.mpi_pytorch import setup_pytorch_for_mpi, sync_params, mpi_avg_grads
from ppo_utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs
import copy
from trust_region_utils import *
from replay_buffers import *
def LBPO(env_fn, env_name = '', actor_critic=core.MLPActorCriticCost, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=50, gamma=0.99, clip_ratio=0.2, pi_lr=3e-4,
vf_lr=1e-3, jf_lr=1e-3, penalty_init=1., penalty_lr=5e-2, cost_lim=25, train_pi_iters=80, train_v_iters=80, lam=0.97, max_ep_len=1000,
target_kl=0.01, target_l2=0.012, logger_kwargs=dict(), save_freq=10, beta=0.01, beta_thres=0.05):
"""
Lyapunov Barrier Policy Optimization
Args:
env_fn : A function which creates a copy of the environment.
The environment must satisfy the OpenAI Gym API.
env_name : Name of the environment
actor_critic: The constructor method for a PyTorch Module with a
``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
module. The ``step`` method should accept a batch of observations
and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``a`` (batch, act_dim) | Numpy array of actions for each
| observation.
``v`` (batch,) | Numpy array of value estimates
| for the provided observations.
``logp_a`` (batch,) | Numpy array of log probs for the
| actions in ``a``.
=========== ================ ======================================
The ``act`` method behaves the same as ``step`` but only returns ``a``.
The ``pi`` module's forward call should accept a batch of
observations and optionally a batch of actions, and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``pi`` N/A | Torch Distribution object, containing
| a batch of distributions describing
| the policy for the provided observations.
``logp_a`` (batch,) | Optional (only returned if batch of
| actions is given). Tensor containing
| the log probability, according to
| the policy, of the provided actions.
| If actions not given, will contain
| ``None``.
=========== ================ ======================================
The ``v`` module's forward call should accept a batch of observations
and return:
=========== ================ ======================================
Symbol Shape Description
=========== ================ ======================================
``v`` (batch,) | Tensor containing the value estimates
| for the provided observations. (Critical:
| make sure to flatten this!)
=========== ================ ======================================
ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
you provided to PPO.
seed (int): Seed for random number generators.
steps_per_epoch (int): Number of steps of interaction (state-action pairs)
for the agent and the environment in each epoch.
epochs (int): Number of epochs of interaction (equivalent to
number of policy updates) to perform.
gamma (float): Discount factor. (Always between 0 and 1.)
clip_ratio (float): Hyperparameter for clipping in the policy objective.
Roughly: how far can the new policy go from the old policy while
still profiting (improving the objective function)? The new policy
can still go farther than the clip_ratio says, but it doesn't help
on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
denoted by :math:`\epsilon`.
pi_lr (float): Learning rate for policy optimizer.
vf_lr (float): Learning rate for value function optimizer.
train_pi_iters (int): Maximum number of gradient descent steps to take
on policy loss per epoch. (Early stopping may cause optimizer
to take fewer than this.)
train_v_iters (int): Number of gradient descent steps to take on
value function per epoch.
lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
close to 1.)
max_ep_len (int): Maximum length of trajectory / episode / rollout.
target_kl (float): Roughly what KL divergence we think is appropriate
between new and old policies after an update. This will get used
for early stopping. (Usually small, 0.01 or 0.05.)
logger_kwargs (dict): Keyword args for EpochLogger.
save_freq (int): How often (in terms of gap between epochs) to save
the current policy and value function.
cost_lim (float): Cumulative constraint threshold that we want the agent to respect.
target_l2 (float): Hard constraint on KL or a trust region constraint.
beta(float): Barrier parameter to control the amount of risk aversion.
beta(thres): Barrier parameter for gradient clipping. Set to 0.05
"""
# Special function to avoid certain slowdowns from PyTorch + MPI combo.
setup_pytorch_for_mpi()
# Set up logger and save configuration
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
# Random seed
seed += 10000 * proc_id()
torch.manual_seed(seed)
np.random.seed(seed)
# Instantiate environment
env = env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape
if 'Grid' in env_name:
ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
else:
ac = torch.load('safe_initial_policies/'+env_name+'.pt')
# Sync params across processes
sync_params(ac)
# Count variables
var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.Qv1])
logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts)
# Set up experience buffer
local_steps_per_epoch = int(steps_per_epoch / num_procs())
buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)
# Set up penalty params
soft_penalty = Variable(torch.exp(torch.Tensor([penalty_init]))-1, requires_grad=True)
penalty_optimizer = torch.optim.Adam([soft_penalty],lr=penalty_lr)
print("Beta: {} Beta threshold: {}".format(beta, beta_thres))
constraint_violations = [0]
constraint_violations_count = [0]
def safe_transform(data, baseline_pi, pi, epsilon, proj_max_dist):
# Do a line search
max_steps = 10
obs = data['obs']
for step in range(max_steps):
ls_alpha = 0.5**step
for param1, param2, target_param in zip(ac.pi.parameters(),
ac.baseline_pi.parameters(), ac.pi_mix.parameters()):
target_param.data.copy_((ls_alpha)*param1.data + (1-ls_alpha) * param2.data)
mix_act = ac.act_pi(ac.pi_mix, obs).detach()
epsilon_observed = ac.Qj1(torch.cat((obs,mix_act),dim=1)) - ac.Qj1(torch.cat((obs,ac.baseline_pi(obs)),dim=1))
if epsilon_observed.mean()<=epsilon or step == max_steps-1:
for param, target_param in zip(ac.pi_mix.parameters(),
ac.pi.parameters()):
target_param.data.copy_(param.data)
break
return ls_alpha
def conjugate_gradients(Avp, b, nsteps, residual_tol=1e-10):
x = torch.zeros(b.size())
r = b.clone()
p = b.clone()
rdotr = torch.dot(r, r)
for i in range(nsteps):
_Avp = Avp(p)
alpha = rdotr / torch.dot(p, _Avp)
x += alpha * p
r -= alpha * _Avp
new_rdotr = torch.dot(r, r)
betta = new_rdotr / rdotr
p = r + betta * p
rdotr = new_rdotr
if rdotr < residual_tol:
break
return x
def linesearch(model,
f,
x,
fullstep,
expected_improve_rate,
max_backtracks=10,
accept_ratio=.1):
fval = f().data
for (_n_backtracks, stepfrac) in enumerate(.5**np.arange(max_backtracks)):
xnew = x + stepfrac * fullstep
set_flat_params_to(model, xnew)
newfval = f().data
actual_improve = fval - newfval
expected_improve = expected_improve_rate * stepfrac
ratio = actual_improve / expected_improve
if ratio.item() > accept_ratio and actual_improve.item() > 0:
return True, xnew
return False, x
def trust_region_step(model, get_loss, get_kl, max_kl, damping):
loss = get_loss()
grads = torch.autograd.grad(loss, model.parameters())
loss_grad = torch.cat([grad.view(-1) for grad in grads]).data
def Fvp(v):
kl = get_kl()
kl = kl.mean()
grads = torch.autograd.grad(kl, model.parameters(), create_graph=True)
flat_grad_kl = torch.cat([grad.view(-1) for grad in grads])
kl_v = (flat_grad_kl * Variable(v)).sum()
grads = torch.autograd.grad(kl_v, model.parameters())
flat_grad_grad_kl = torch.cat([grad.contiguous().view(-1) for grad in grads]).data
return flat_grad_grad_kl + v * damping
stepdir = conjugate_gradients(Fvp, -loss_grad, 10)
shs = 0.5 * (stepdir * Fvp(stepdir)).sum(0, keepdim=True)
lm = torch.sqrt(shs / max_kl)
fullstep = stepdir / lm[0]
neggdotstepdir = (-loss_grad * stepdir).sum(0, keepdim=True)
print(("lagrange multiplier:", lm[0], "grad_norm:", loss_grad.norm()))
prev_params = get_flat_params_from(model)
success, new_params = linesearch(model, get_loss, prev_params, fullstep,
neggdotstepdir / lm[0])
set_flat_params_to(model, new_params)
return loss
# Set up function for computing PPO policy loss
def compute_loss_pi(data, epoch_no=1):
obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data['logp']
def get_kl(old_mean=None, new_mean=None):
if old_mean is None:
mean1 = ac.pi(obs)
else:
mean1 = old_mean
log_std1, std1 = -2.99, 0.05
if new_mean is None:
mean0 = torch.autograd.Variable(mean1.data)
else:
mean0 = new_mean
log_std0 = -2.99
std0 = 0.05
kl = log_std1 - log_std0 + (std0**2 + (mean0 - mean1).pow(2)) / (2.0 * std1**2) - 0.5
return kl.sum(1, keepdim=True)
def get_loss_pi():
if ac.epsilon<0:
loss_pi = (ac.Qj1(torch.cat((obs, ac.pi(obs)),dim=1))).mean()
else:
# Surrogate objective that matches the gradient of the barrier at \pi=\pi_B
if (beta/ac.epsilon)-beta_thres>0:
loss_pi = - (ac.Qv1(torch.cat((obs, ac.pi(obs)),dim=1))).mean() + \
(beta/ac.epsilon)*ac.Qj1(torch.cat((obs, ac.pi(obs)),dim=1)).mean()
else:
loss_pi = - (ac.Qv1(torch.cat((obs, ac.pi(obs)),dim=1))).mean()
return loss_pi
old_mean = ac.pi(obs).detach().data
loss_pi = trust_region_step(ac.pi, get_loss_pi, get_kl, target_l2, 0.1)
if ac.epsilon>=0:
alpha_mix = safe_transform(data, ac.baseline_pi, ac.pi, ac.epsilon, np.sqrt(np.max((target_l2+0.5)*(2.0 * 0.05**2) - 0.05**2,0)))
logger.store(AlphaMix = alpha_mix)
if (beta/ac.epsilon)-beta_thres>0:
logger.store(CostGradWeight = (beta/ac.epsilon))
else:
logger.store(CostGradWeight = 0)
else:
logger.store(AlphaMix = -1)
logger.store(CostGradWeight = -1)
# Useful extra info
approx_l2 = torch.sqrt(torch.mean((ac.pi(obs) - data['old_act'])**2)).item()
approx_kl = get_kl(old_mean = old_mean, new_mean=ac.pi(obs).detach()).mean().item()
ent = 0
clipped = [0]
clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
pi_info = dict(kl=approx_kl,l2=approx_l2, ent=ent, cf=clipfrac)
return loss_pi, pi_info
# Set up function for computing value loss
def compute_loss_v(data):
obs, act, ret = data['obs'], data['act'], data['ret']
return ((ac.Qv1(torch.cat((obs,act),dim=1)) - ret)**2).mean(), ((ac.Qv2(torch.cat((obs,act),dim=1)) - ret)**2).mean()
# Set up function for computing value loss
def compute_loss_j(data):
obs, act, cost_ret = data['obs'], data['act'], data['cost_ret']
return ((ac.Qj1(torch.cat((obs,act),dim=1)) - cost_ret)**2).mean(), ((ac.Qj2(torch.cat((obs,act),dim=1)) - cost_ret)**2).mean()
# Set up optimizers for policy and value function
pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
pi_bc_optimizer = Adam(ac.pi.parameters(), lr=0.001)
vf1_optimizer = Adam(ac.Qv1.parameters(), lr=vf_lr)
vf2_optimizer = Adam(ac.Qv2.parameters(), lr=vf_lr)
jf1_optimizer = Adam(ac.Qj1.parameters(), lr=jf_lr)
jf2_optimizer = Adam(ac.Qj2.parameters(), lr=jf_lr)
# Set up model saving
logger.setup_pytorch_saver(ac)
def update(epoch_no, constraint_violations, constraint_violations_count):
# global soft_penalty, penalty_optimizer
data = buf.get()
# Update the penalty
curr_cost = logger.get_stats('EpCostRet')[0]
if curr_cost-cost_lim>0:
logger.log('Warning! Safety constraint is already violated.', 'red')
ac.epsilon = (1-gamma)*(cost_lim-curr_cost)
if epoch_no==0 or ac.epsilon>=0:
ac.baseline_pi = copy.deepcopy(ac.pi)
ac.baseline_Qj = copy.deepcopy(ac.Qj1)
pi_l_old, v_l_old, j_l_old = 0, 0, 0
pi_info_old = dict(kl=0,l2=0, ent=0, cf=0)
if epoch_no==0:
for i in range(train_v_iters):
vf1_optimizer.zero_grad()
vf2_optimizer.zero_grad()
loss_v1, loss_v2 = compute_loss_v(data)
loss_v1.backward()
loss_v2.backward()
mpi_avg_grads(ac.Qv1) # average grads across MPI processes
mpi_avg_grads(ac.Qv2)
vf1_optimizer.step()
vf2_optimizer.step()
jf1_optimizer.zero_grad()
jf2_optimizer.zero_grad()
loss_j1, loss_j2 = compute_loss_j(data)
loss_j1.backward()
loss_j2.backward()
mpi_avg_grads(ac.Qj1) # average grads across MPI processes
mpi_avg_grads(ac.Qj2)
jf1_optimizer.step()
jf2_optimizer.step()
# Trust region update for policy
loss_pi, pi_info = compute_loss_pi(data, epoch_no = epoch_no)
logger.store(StopIter=0)
# Value and Cost Value function learning
for i in range(train_v_iters):
vf1_optimizer.zero_grad()
vf2_optimizer.zero_grad()
loss_v1, loss_v2 = compute_loss_v(data)
loss_v1.backward()
loss_v2.backward()
mpi_avg_grads(ac.Qv1) # average grads across MPI processes
mpi_avg_grads(ac.Qv2)
vf1_optimizer.step()
vf2_optimizer.step()
jf1_optimizer.zero_grad()
jf2_optimizer.zero_grad()
loss_j1, loss_j2 = compute_loss_j(data)
loss_j1.backward()
loss_j2.backward()
mpi_avg_grads(ac.Qj1) # average grads across MPI processes
mpi_avg_grads(ac.Qj2)
jf1_optimizer.step()
jf2_optimizer.step()
# Log changes from update
kl,l2, ent, cf = pi_info['kl'],pi_info['l2'], pi_info_old['ent'], pi_info['cf']
logger.store(LossPi=pi_l_old, LossV=v_l_old, LossJ= j_l_old,
KL=kl, L2=l2, Entropy=ent, ClipFrac=cf,
DeltaLossPi=(loss_pi.item() - pi_l_old),
DeltaLossV=(loss_v1.item() - v_l_old),
DeltaLossJ=(loss_j1.item() - j_l_old),
Penalty=torch.nn.functional.softplus(soft_penalty))
# Prepare for interaction with environment
start_time = time.time()
o, ep_ret,ep_cost_ret, ep_len = env.reset(), 0, 0, 0
# Main loop: collect experience in env and update/log each epoch
for epoch in range(epochs):
for t in range(local_steps_per_epoch):
a, v, j, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))
noise = 0.05 * np.random.randn(*a.shape) # fixed noise
a = a + noise
next_o, r, d, info = env.step(a)
ep_ret += r
ep_cost_ret += info.get('cost', 0)
ep_len += 1
# save and log
buf.store(o, a, r, info.get('cost', 0), v, j, logp, a)
logger.store(VVals=v, JVals = j)
# Update obs (critical!)
o = next_o
timeout = ep_len == max_ep_len
terminal = d or timeout
epoch_ended = t==local_steps_per_epoch-1
if terminal or epoch_ended:
if epoch_ended and not(terminal):
print('Warning: trajectory cut off by epoch at %d steps.'%ep_len, flush=True)
# if trajectory didn't reach terminal state, bootstrap value target
if timeout or epoch_ended:
_, v, j, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
else:
v, j = 0, 0
buf.finish_path(v, j)
if terminal:
# only save EpRet / EpLen if trajectory finished
logger.store(EpRet=ep_ret, EpCostRet=ep_cost_ret, EpLen=ep_len)
o, ep_ret , ep_cost_ret, ep_len = env.reset(), 0, 0, 0
# Save model
if (epoch % save_freq == 0) or (epoch == epochs-1):
logger.save_state({'env': env}, None)
# Perform PPO update!
update(epoch, constraint_violations, constraint_violations_count)
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('EpCostRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('VVals', with_min_and_max=True)
logger.log_tabular('JVals', with_min_and_max=True)
logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossV', average_only=True)
logger.log_tabular('LossJ', average_only=True)
logger.log_tabular('DeltaLossPi', average_only=True)
logger.log_tabular('DeltaLossV', average_only=True)
logger.log_tabular('DeltaLossJ', average_only=True)
logger.log_tabular('Entropy', average_only=True)
logger.log_tabular('KL', average_only=True)
logger.log_tabular('Epsilon', ac.epsilon)
logger.log_tabular('CostGradWeight', average_only=True)
logger.log_tabular('ClipFrac', average_only=True)
logger.log_tabular('StopIter', average_only=True)
logger.log_tabular('Penalty', average_only=True)
logger.log_tabular('AlphaMix', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='Safexp-PointGoal1-v0')
parser.add_argument('--hid', type=int, default=256)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--beta', type=float, default=0.01)
parser.add_argument('--beta_thres', type=float, default=0.05)
parser.add_argument('--cost_lim', type=float, default=25.0)
parser.add_argument('--target_l2', type=float, default=0.012)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--cpu', type=int, default=3)
parser.add_argument('--steps', type=int, default=30000)
parser.add_argument('--epochs', type=int, default=1500)
parser.add_argument('--exp_name', type=str, default='td3_dump')
args = parser.parse_args()
mpi_fork(args.cpu) # run parallel code with mpi
from ppo_utils.run_utils import setup_logger_kwargs
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
LBPO(lambda : gym.make(args.env), env_name= args.env, actor_critic=core.MLPActorCriticTD3trust,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs, target_l2=args.target_l2, cost_lim=args.cost_lim, beta=args.beta, beta_thres = args.beta_thres,
logger_kwargs=logger_kwargs)