-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
VerticalOrderTraversalOfABinaryTree.cpp
133 lines (122 loc) · 3.82 KB
/
VerticalOrderTraversalOfABinaryTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Source : https://leetcode.com/problems/vertical-order-traversal-of-a-binary-tree/
// Author : Hao Chen
// Date : 2019-02-05
/*****************************************************************************************************
*
* Given a binary tree, return the vertical order traversal of its nodes values.
*
* For each node at position (X, Y), its left and right children respectively will be at positions
* (X-1, Y-1) and (X+1, Y-1).
*
* Running a vertical line from X = -infinity to X = +infinity, whenever the vertical line touches
* some nodes, we report the values of the nodes in order from top to bottom (decreasing Y
* coordinates).
*
* If two nodes have the same position, then the value of the node that is reported first is the value
* that is smaller.
*
* Return an list of non-empty reports in order of X coordinate. Every report will have a list of
* values of nodes.
*
* Example 1:
*
*
* +--+
* +----+3 +----+
* | +--+ |
* | |
* +--+ +--+
* |9 | +---+20+---+
* +--+ | +--+ |
* | |
* +--+ +--+
* |15| |7 |
* +--+ +--+
*
*
* Input: [3,9,20,null,null,15,7]
* Output: [[9],[3,15],[20],[7]]
* Explanation:
* Without loss of generality, we can assume the root node is at position (0, 0):
* Then, the node with value 9 occurs at position (-1, -1);
* The nodes with values 3 and 15 occur at positions (0, 0) and (0, -2);
* The node with value 20 occurs at position (1, -1);
* The node with value 7 occurs at position (2, -2).
*
* Example 2:
*
*
* +-+
* |1|
* +-----------+
* | |
* +++ +++
* |2| |3|
* +--------+ +--------+
* | | | |
* +++ ++--++ +++
* |4| |5||6| |7|
* +-+ +----+ +-+
*
*
* Input: [1,2,3,4,5,6,7]
* Output: [[4],[2],[1,5,6],[3],[7]]
* Explanation:
* The node with value 5 and the node with value 6 have the same position according to the given
* scheme.
* However, in the report "[1,5,6]", the node value of 5 comes first since 5 is smaller than 6.
*
* Note:
*
* The tree will have between 1 and 1000 nodes.
* Each node's value will be between 0 and 1000.
*
******************************************************************************************************/
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Item {
public:
Item(int _x, int _y, int _val):x(_x), y(_y),val(_val) {}
int x, y;
int val;
};
class ItemCmp {
public:
bool operator () (const Item &lhs, const Item &rhs) const {
return lhs.y != rhs.y ? lhs.y > rhs.y : lhs.val < rhs.val;
}
};
int getValue(const Item& i) {
return i.val;
}
class Solution {
public:
vector<vector<int>> verticalTraversal(TreeNode* root) {
set<int> rows;
unordered_map<int, set<Item, ItemCmp>> m;
verticalTraversalHelper(root, 0, 0, rows, m);
vector<vector<int>> result;
for(auto r : rows) {
vector<int> v;
transform(m[r].begin(), m[r].end(), back_inserter(v), getValue);
result.push_back(v);
}
return result;
}
void verticalTraversalHelper(TreeNode* root, int x, int y,
set<int>& rows,
unordered_map<int, set<Item, ItemCmp>>& m) {
if ( !root ) return;
rows.insert(x);
m[x].insert(Item(x, y, root->val));
verticalTraversalHelper(root->left, x-1, y-1, rows, m); //left
verticalTraversalHelper(root->right, x+1, y-1, rows, m); //right
}
};