-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
UniquePaths.III.cpp
100 lines (90 loc) · 3.24 KB
/
UniquePaths.III.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
// Source : https://leetcode.com/problems/unique-paths-iii/
// Author : Hao Chen
// Date : 2019-02-03
/*****************************************************************************************************
*
* On a 2-dimensional grid, there are 4 types of squares:
*
* 1 represents the starting square. There is exactly one starting square.
* 2 represents the ending square. There is exactly one ending square.
* 0 represents empty squares we can walk over.
* -1 represents obstacles that we cannot walk over.
*
* Return the number of 4-directional walks from the starting square to the ending square, that walk
* over every non-obstacle square exactly once.
*
* Example 1:
*
* Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
* Output: 2
* Explanation: We have the following two paths:
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
* 2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
*
* Example 2:
*
* Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
* Output: 4
* Explanation: We have the following four paths:
* 1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
* 2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
* 3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
* 4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
*
* Example 3:
*
* Input: [[0,1],[2,0]]
* Output: 0
* Explanation:
* There is no path that walks over every empty square exactly once.
* Note that the starting and ending square can be anywhere in the grid.
*
* Note:
*
* 1 <= grid.length * grid[0].length <= 20
*
******************************************************************************************************/
class Solution {
public:
int uniquePathsIII(vector<vector<int>>& grid) {
int path = 0;
int startX, startY;
if (!findStartPoint( grid, startX, startY)) return 0;
uniquePathsHelper(grid, startX, startY, path);
return path;
}
bool findStartPoint(vector<vector<int>> &grid, int& x, int& y) {
for(int i=0; i<grid.size(); i++) {
for(int j=0; j<grid[0].size(); j++) {
if (grid[i][j] == 1) {
x = i; y =j;
return true;
}
}
}
return false;
}
bool check(vector<vector<int>> &grid ) {
for(int i=0; i<grid.size(); i++) {
for(int j=0; j<grid[0].size(); j++) {
if (grid[i][j] == 0 ) return false;
}
}
return true;
}
void uniquePathsHelper(vector<vector<int>> &grid, int x, int y, int& path ) {
if (x < 0 || y < 0 || x>= grid.size() || y>=grid[0].size()) return;
if ( grid[x][y] < 0) return;
if ( grid[x][y] == 2) {
if (check(grid)) path++;
return;
}
//back tracing - mark -2 means already passed.
grid[x][y] = -2;
uniquePathsHelper(grid, x, y-1, path); // up
uniquePathsHelper(grid, x, y+1, path); // down
uniquePathsHelper(grid, x+1, y, path); // right
uniquePathsHelper(grid, x-1, y, path); // left
grid[x][y] = 0;
}
};