-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
CreateMaximumNumber.cpp
152 lines (138 loc) · 4.7 KB
/
CreateMaximumNumber.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Source : https://leetcode.com/problems/create-maximum-number/
// Author : Hao Chen
// Date : 2016-01-21
/***************************************************************************************
*
* Given two arrays of length m and n with digits 0-9 representing two numbers.
* Create the maximum number of length k from digits of the two. The relative
* order of the digits
* from the same array must be preserved. Return an array of the k digits. You
* should try to optimize your time and space complexity.
*
* Example 1:
*
* nums1 = [3, 4, 6, 5]
* nums2 = [9, 1, 2, 5, 8, 3]
* k = 5
* return [9, 8, 6, 5, 3]
*
* Example 2:
*
* nums1 = [6, 7]
* nums2 = [6, 0, 4]
* k = 5
* return [6, 7, 6, 0, 4]
*
* Example 3:
*
* nums1 = [3, 9]
* nums2 = [8, 9]
* k = 3
* return [9, 8, 9]
*
* Credits:Special thanks to @dietpepsi for adding this problem and creating all test
* cases.
***************************************************************************************/
/*
* Solution
* --------
*
* 1) We split the `K` to two parts : `i` & `k-i` 0<= i <= k
*
* 2) Find the max number for both arrays with giving the length `i` and `k-i`
* - sub1 = FindMaxNumber(num1, len=i);
* - sub2 = FindMaxNumber(num2, len=k-i);
* Here, we need use stack-way to solve find the max number.
*
* 3) Merge two arrays
* - solution = Merge(sub1, sub2);
* Here, we need be careful if a two number are same which one we need to take. For examples:
* [6,7]
* [6,0,4]
* 5
*
* [2,5,6,4,4,0]
* [7,3,8,0,6,5,7,6,2]
* 15
*
* 4) compare with the last solution
* - result = max(result, solution);
*
*
*/
class Solution {
public:
vector<int> maxNumber(vector<int>& nums1, vector<int>& nums2, int k) {
vector<int> result;
int len1 = nums1.size();
int len2 = nums2.size();
for (int i=0; i<=k; i++){
if (len1 < i || len2 < k-i) continue;
vector<int> sub1 = findMaxSubArray(nums1, i);
vector<int> sub2 = findMaxSubArray(nums2, k-i);
vector<int> merge = mergeTwoArrays(sub1, sub2);
if (compareTwoArray(merge, 0, result, 0)) {
result = merge;
}
}
return result;
}
bool compareTwoArray(vector<int>& nums1, int start1, vector<int>& nums2, int start2) {
int n1 = nums1.size();
int n2 = nums2.size();
for(; start1<n1 && start2<n2; start1++, start2++){
if (nums1[start1] > nums2[start2]) return true;
if (nums1[start1] < nums2[start2]) return false;
}
//if num1 still have numbers, return true, else return false
return start1 < nums1.size();
}
vector<int> mergeTwoArrays(vector<int>& nums1, vector<int>& nums2) {
vector<int> result;
int len1 = nums1.size();
int len2 = nums2.size();
int pos1=0, pos2=0;
while ( pos1 < len1 && pos2 < len2 ){
// Be careful if two numbers are equal. consider the following case
// case 1: [6,7], [6,0,4] - we have same item - 6
// case 2: [4,0,2], [2,0,3,1] - we have same item - 0
// which one we need to merge?
// We need compare the rest of array.
if (nums1[pos1] == nums2[pos2]){
result.push_back( compareTwoArray(nums1, pos1+1, nums2, pos2+1) ?
nums1[pos1++] : nums2[pos2++]);
}else {
result.push_back(nums1[pos1] > nums2[pos2] ?
nums1[pos1++] : nums2[pos2++]);
}
}
if (pos1 < len1){
result.insert(result.end(), nums1.begin()+pos1, nums1.end());
}
if (pos2 < len2) {
result.insert(result.end(), nums2.begin()+pos2, nums2.end());
}
return result;
}
// using a stack method to find the max sub-array
// k <= nums.size()
vector<int> findMaxSubArray(vector<int>& nums, int k) {
int len = nums.size();
if ( k >= len ) return nums;
vector<int> result(k, 0);
int idx = 0; // the postion for result array
for (int i=0; i<len; i++){
// if we met a number > the last element of result[],
// and we still have enough numbers,
// then pop up the item
while (idx>0 && k - idx < len - i && result[idx-1] < nums[i]) {
idx--;
}
//push the number into the result[]
if (idx < k) {
result[idx++] = nums[i];
}
}
return result;
}
};