-
Notifications
You must be signed in to change notification settings - Fork 93
/
nusvm.py
142 lines (119 loc) · 5.39 KB
/
nusvm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""Nu-SVM implementation by sklearn. For small data."""
import datatable as dt
import numpy as np
from sklearn.preprocessing import LabelEncoder
from h2oaicore.models import CustomModel
from sklearn.svm import NuSVC, NuSVR
class NuSVMModel(CustomModel):
_regression = True
_binary = True
_multiclass = False # WIP
_parallel_task = False
_display_name = "NuSVM"
_description = "Nu-SVM model based on sklearn. Not advised for large data."
def set_default_params(self,
accuracy=None, time_tolerance=None, interpretability=None,
**kwargs):
nu = min(kwargs['nu'], 1) if 'nu' in kwargs else 0.5
kernel = kwargs['kernel'] if "kernel" in kwargs and kwargs['kernel'] in ['linear',
'rbf',
'poly',
'sigmoid'] else 'rbf'
degree = kwargs['degree'] if 'degree' in kwargs and kwargs['degree'] in [3, 4, 5, 6] else 3
self.params = {'nu': nu,
'kernel': kernel,
'degree': degree,
'probability': True
}
def mutate_params(self,
accuracy=10,
**kwargs):
n_jobs = -1
list_of_nus = [0.4, 0.5, 0.6]
list_of_kernels = ['linear', 'rbf']
list_of_degrees = [3, 4]
if accuracy > 8:
list_of_nus = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
list_of_kernels = ['linear', 'rbf', 'poly', 'sigmoid']
list_of_degrees = [3, 4, 5, 6]
elif accuracy >= 5:
list_of_nus = [0.2, 0.4, 0.5, 0.6, 0.8]
nu_index = np.random.randint(0, high=len(list_of_nus))
kernel_index = np.random.randint(0, high=len(list_of_kernels))
degree_index = np.random.randint(0, high=len(list_of_degrees))
nu = list_of_nus[nu_index]
kernel = list_of_kernels[kernel_index]
degree = list_of_degrees[degree_index]
self.params = {'nu': nu,
'kernel': kernel,
'degree': degree,
'probability': True
}
def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
X = dt.Frame(X)
orig_cols = list(X.names)
if self.num_classes >= 2:
feature_model = NuSVC(kernel='linear', nu=self.params['nu'])
model = NuSVC(nu=self.params['nu'], kernel=self.params['kernel'],
degree=self.params['degree'], probability=self.params['probability'])
lb = LabelEncoder()
lb.fit(self.labels)
y = lb.transform(y)
else:
feature_model = NuSVR(kernel='linear', nu=self.params['nu'])
model = NuSVR(nu=self.params['nu'], kernel=self.params['kernel'],
degree=self.params['degree'])
self.means = dict()
for col in X.names:
XX = X[:, col]
self.means[col] = XX.mean1()
if self.means[col] is None:
self.means[col] = 0
XX.replace(None, self.means[col])
X[:, col] = XX
assert X[dt.isna(dt.f[col]), col].nrows == 0
X = X.to_numpy()
# nu is infeasible sometimes
# doing quaternary search on both sides of selected nu
valid_nu = None
while valid_nu is None:
try:
model.fit(X, y)
valid_nu = self.params['nu']
except:
if self.params['nu'] > 0.5:
self.params['nu'] = 1.0 - self.params['nu']
else:
self.params['nu'] = (4.0 - 3.0 * self.params['nu']) / 4.0
if self.num_classes >= 2:
feature_model = NuSVC(kernel='linear', nu=self.params['nu'])
model = NuSVC(nu=self.params['nu'], kernel=self.params['kernel'],
degree=self.params['degree'], probability=self.params['probability'])
else:
feature_model = NuSVR(kernel='linear', nu=self.params['nu'])
model = NuSVR(nu=self.params['nu'], kernel=self.params['kernel'],
degree=self.params['degree'])
feature_model.fit(X, y)
importances = np.array(abs(feature_model.coef_)).ravel()
self.set_model_properties(model=model,
features=orig_cols,
importances=importances.tolist(),
iterations=0)
def predict(self, X, **kwargs):
X = dt.Frame(X)
for col in X.names:
XX = X[:, col]
XX.replace(None, self.means[col])
X[:, col] = XX
pred_contribs = kwargs.get('pred_contribs', None)
output_margin = kwargs.get('output_margin', None)
model, _, _, _ = self.get_model_properties()
X = X.to_numpy()
if not pred_contribs:
if self.num_classes >= 2:
preds = model.predict_proba(X)
else:
preds = model.predict(X)
return preds
else:
raise NotImplementedError("No Shapley for Nu-SVM model")