-
Notifications
You must be signed in to change notification settings - Fork 0
/
undirected.go
223 lines (194 loc) · 5.22 KB
/
undirected.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"fmt"
"gonum.org/v1/gonum/graph"
"github.com/graphism/simple/internal/uid"
"gonum.org/v1/gonum/graph/iterator"
)
var (
ug *UndirectedGraph
_ graph.Graph = ug
_ graph.Undirected = ug
_ graph.NodeAdder = ug
_ graph.NodeRemover = ug
_ graph.EdgeAdder = ug
_ graph.EdgeRemover = ug
)
// UndirectedGraph implements a generalized undirected graph.
type UndirectedGraph struct {
nodes map[int64]graph.Node
edges map[int64]map[int64]graph.Edge
nodeIDs uid.Set
}
// NewUndirectedGraph returns an UndirectedGraph.
func NewUndirectedGraph() *UndirectedGraph {
return &UndirectedGraph{
nodes: make(map[int64]graph.Node),
edges: make(map[int64]map[int64]graph.Edge),
nodeIDs: uid.NewSet(),
}
}
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
func (g *UndirectedGraph) AddNode(n graph.Node) {
if _, exists := g.nodes[n.ID()]; exists {
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
}
g.nodes[n.ID()] = n
g.nodeIDs.Use(n.ID())
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *UndirectedGraph) Edge(uid, vid int64) graph.Edge {
return g.EdgeBetween(uid, vid)
}
// EdgeBetween returns the edge between nodes x and y.
func (g *UndirectedGraph) EdgeBetween(xid, yid int64) graph.Edge {
edge, ok := g.edges[xid][yid]
if !ok {
return nil
}
if edge.From().ID() == xid {
return edge
}
return edge.ReversedEdge()
}
// Edges returns all the edges in the graph.
func (g *UndirectedGraph) Edges() graph.Edges {
if len(g.edges) == 0 {
return graph.Empty
}
var edges []graph.Edge
seen := make(map[[2]int64]struct{})
for _, u := range g.edges {
for _, e := range u {
uid := e.From().ID()
vid := e.To().ID()
if _, ok := seen[[2]int64{uid, vid}]; ok {
continue
}
seen[[2]int64{uid, vid}] = struct{}{}
seen[[2]int64{vid, uid}] = struct{}{}
edges = append(edges, e)
}
}
if len(edges) == 0 {
return graph.Empty
}
return iterator.NewOrderedEdges(edges)
}
// From returns all nodes in g that can be reached directly from n.
func (g *UndirectedGraph) From(id int64) graph.Nodes {
if _, ok := g.nodes[id]; !ok {
return graph.Empty
}
nodes := make([]graph.Node, len(g.edges[id]))
i := 0
for from := range g.edges[id] {
nodes[i] = g.nodes[from]
i++
}
if len(nodes) == 0 {
return graph.Empty
}
return iterator.NewOrderedNodes(nodes)
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g *UndirectedGraph) HasEdgeBetween(xid, yid int64) bool {
_, ok := g.edges[xid][yid]
return ok
}
// NewEdge returns a new Edge from the source to the destination node.
func (g *UndirectedGraph) NewEdge(from, to graph.Node) graph.Edge {
return &Edge{F: from, T: to}
}
// NewNode returns a new unique Node to be added to g. The Node's ID does
// not become valid in g until the Node is added to g.
func (g *UndirectedGraph) NewNode() graph.Node {
if len(g.nodes) == 0 {
return Node(0)
}
if int64(len(g.nodes)) == uid.Max {
panic("simple: cannot allocate node: no slot")
}
return Node(g.nodeIDs.NewID())
}
// Node returns the node with the given ID if it exists in the graph,
// and nil otherwise.
func (g *UndirectedGraph) Node(id int64) graph.Node {
return g.nodes[id]
}
// Nodes returns all the nodes in the graph.
func (g *UndirectedGraph) Nodes() graph.Nodes {
if len(g.nodes) == 0 {
return graph.Empty
}
nodes := make([]graph.Node, len(g.nodes))
i := 0
for _, n := range g.nodes {
nodes[i] = n
i++
}
return iterator.NewOrderedNodes(nodes)
}
// RemoveEdge removes the edge with the given end IDs from the graph, leaving the terminal nodes.
// If the edge does not exist it is a no-op.
func (g *UndirectedGraph) RemoveEdge(fid, tid int64) {
if _, ok := g.nodes[fid]; !ok {
return
}
if _, ok := g.nodes[tid]; !ok {
return
}
delete(g.edges[fid], tid)
delete(g.edges[tid], fid)
}
// RemoveNode removes the node with the given ID from the graph, as well as any edges attached
// to it. If the node is not in the graph it is a no-op.
func (g *UndirectedGraph) RemoveNode(id int64) {
if _, ok := g.nodes[id]; !ok {
return
}
delete(g.nodes, id)
for from := range g.edges[id] {
delete(g.edges[from], id)
}
delete(g.edges, id)
g.nodeIDs.Release(id)
}
// SetEdge adds e, an edge from one node to another. If the nodes do not exist, they are added
// and are set to the nodes of the edge otherwise.
// It will panic if the IDs of the e.From and e.To are equal.
func (g *UndirectedGraph) SetEdge(e graph.Edge) {
var (
from = e.From()
fid = from.ID()
to = e.To()
tid = to.ID()
)
if fid == tid {
//panic("simple: adding self edge")
}
if _, ok := g.nodes[fid]; !ok {
g.AddNode(from)
} else {
g.nodes[fid] = from
}
if _, ok := g.nodes[tid]; !ok {
g.AddNode(to)
} else {
g.nodes[tid] = to
}
if fm, ok := g.edges[fid]; ok {
fm[tid] = e
} else {
g.edges[fid] = map[int64]graph.Edge{tid: e}
}
if tm, ok := g.edges[tid]; ok {
tm[fid] = e
} else {
g.edges[tid] = map[int64]graph.Edge{fid: e}
}
}