-
Notifications
You must be signed in to change notification settings - Fork 0
/
functions2.py
248 lines (190 loc) · 8.5 KB
/
functions2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import fileinput
from subprocess import run, PIPE
import numpy as np
import pandas as pd
import pyhmmer
from pyhmmer.plan7 import HMM, Background, Pipeline, HMMFile
from pyhmmer.easel import SequenceFile
aa = 'ACDEFGHIKLMNPQRSTVWY'
def fasta_reader(file):
'''Converts .fasta to a pandas dataframe with accession as index
and sequence in a column 'sequence'
'''
fasta_df = pd.read_csv(file, sep='>', lineterminator='>', header=None)
fasta_df[['Accession', 'Sequence']] = fasta_df[0].str.split('\n', 1, \
expand=True)
fasta_df['Accession'] = fasta_df['Accession'].str.split('\s').apply(lambda x: x[0])
fasta_df['Sequence'] = fasta_df['Sequence'].replace('\n', '', regex=True).\
astype(str).str.upper().str.replace('U', 'C')
fasta_df.drop(0, axis=1, inplace=True)
fasta_df = fasta_df[(fasta_df.Sequence != '') & (fasta_df.Sequence != 'NONE') & \
fasta_df['Sequence'].str.isalpha()]
fasta_df = fasta_df[(~fasta_df.Sequence.str.contains('X')) & (~fasta_df.Sequence.str.contains('Z'))].copy()
final_df = fasta_df.dropna()
return final_df
def generate_reads(seq, aa_known, max_prob):
'''
Return uniform prob if AA where AA is unknown
Else return max_prob for AA known, divide rem
prob equally
'''
aa = 'ACDEFGHIKLMNPQRSTVWY'
probs = []
remaining_prob = np.round((1-max_prob)/19, 2)
uniform_dist = [1/20]*20
for i, v in enumerate(seq):
p = []
if v not in aa_known:
p = uniform_dist
else:
p = [remaining_prob]*20
p[aa.index(v)] = max_prob
probs.append(p)
return probs
def dels(seq, del_rate, random):
rnd = np.random.default_rng(random+del_rate)
to_del = rnd.choice(len(seq), del_rate*len(seq)//100, replace=False)
subseq = ''.join([v for i, v in enumerate(seq) if i not in to_del])
return subseq
def inserts(seq, ins_rate, random=12345, max_inserts=5):
aa = 'ACDEFGHIKLMNPQRSTVWY'
rnd = np.random.default_rng(random+ins_rate)
to_ins = rnd.choice(len(seq), ins_rate*len(seq)//100, replace=False)
new_seq = []
for i, v in enumerate(seq):
new_seq.append(v)
if i in to_ins:
rem_aa = list(set(aa) - set(seq[i]))
# num_inserts = rnd.integers(2, max_inserts)
num_inserts = 1
for n in range(num_inserts):
rand_aa = rnd.choice(list(rem_aa))
new_seq.append(rand_aa)
return ''.join(new_seq)
def gen_reads_indels(seq, aa_known, max_prob, ins_rate, del_rate, random, max_inserts=5):
seq0 = dels(seq, del_rate, random)
seq1 = inserts(seq0, ins_rate, random, max_inserts)
return generate_reads(seq1, aa_known, max_prob)
cwd = os.getcwd()
dirs_to_make = ['temp', 'data', 'results', 'results/figs', 'results/scan_results']
tmp, data, results, figs, scan_results = [os.path.join(cwd, i) for i in dirs_to_make]
for d in [tmp, data, results, figs, scan_results ]:
try:
os.makedirs(d)
except FileExistsError:
pass
alphabet = pyhmmer.easel.Alphabet.amino()
background = Background(alphabet)
alphabet = pyhmmer.easel.Alphabet.amino()
with SequenceFile("data/uniprot-9606.fasta", digital=True, alphabet=alphabet) as seq_file:
sequences = list(seq_file)
def write_hmm(readings, accession, outfname, transition_prob=None, insert_emissions=None,
alphabet=pyhmmer.easel.Alphabet.amino()):
M = len(readings)
# Since the first row corresponds to the entry probabilities,
# the emissions are unused. By convention, it should still
# contain valid probabilities, so it will always be set as
# follow with 1 probability for the first symbol, and 0 for
# the rest.
readings = np.concatenate([[[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
readings],)
hmm = HMM(M, alphabet)
# transition probabilites
# m->m m->i m->d i->m i->i d->m d->d
# Start transition probability (Always a match)
start_tp = [[1, 0. , 0. , 0.54, 0.46, 1., 0 ]]
if transition_prob == None:
# tp = [[0.8, 0.1, 0.1, 0.54, 0.46, 0.77, 0.23]] * M
tp = [[0.9999, 0.00005, 0.00005, 0.54, 0.46, 0.77, 0.23]] * M
else:
tp = transition_prob
all_tp = start_tp + tp
for idx, val in enumerate(all_tp):
for idx1, trans_p in enumerate(val):
hmm.transition_probabilities[idx, idx1] = trans_p
# Insert emissions
if insert_emissions == None:
ins_em = [background.residue_frequencies]*(M+1)
else:
ins_em = insert_emissions
for idx, val in enumerate(ins_em):
for idx1, ins_p in enumerate(val):
hmm.insert_emissions[idx, idx1] = ins_p
# Match probabilites
match_prob = readings
for idx, val in enumerate(match_prob):
for idx1, match_p in enumerate(val):
hmm.match_emissions[idx, idx1] = match_p
hmm.set_composition()
hmm.name = accession.encode()
output_fname = 'temp/{}.hmm'.format(outfname)
with open(output_fname, 'wb') as output_file:
hmm.write(output_file)
return output_fname
def calibrate_hmm(hmmfile):
with fileinput.FileInput(hmmfile, inplace=True, backup=None) as file:
for line in file:
if 'CONS no' in line:
print(line.replace('CONS no', 'CONS yes'), end='')
else:
print(line, end='')
vit_args = ['hmmsim', '--vit', '--fast', '--seed', '12345', hmmfile]
vit_res = run(vit_args, stdout=PIPE, stderr=PIPE,)
msv_args = ['hmmsim', '--msv', '--fast', '--seed', '12345', hmmfile]
msv_res = run(msv_args, stdout=PIPE, stderr=PIPE,)
fwd_args = ['hmmsim', '--fwd', '--fast', '--seed', '12345', hmmfile]
fwd_res = run(fwd_args, stdout=PIPE, stderr=PIPE,)
calibration_names = ['STATS LOCAL MSV',
'STATS LOCAL VITERBI',
'STATS LOCAL FORWARD'
]
calibration_strings = []
for i, v in enumerate([msv_res, vit_res, fwd_res]):
res = [i for i in v.stdout.decode('ascii').split('\n#')[0].split(' ') if i != '']
calibration_strings.append('{} {} {}'.format(calibration_names[i],
res[-3], res[-2]
))
cal = '\n'.join(calibration_strings)
with fileinput.FileInput(hmmfile, inplace=True, backup=None) as file:
for line in file:
if 'MAP no' in line:
print(line.replace('MAP no\n', f"MAP no\n{cal}\n"), end='')
else:
print(line, end='')
def hmm_build(readings, accession, outfname, transition_prob=None, insert_emissions=None,
alphabet=pyhmmer.easel.Alphabet.amino()):
output = write_hmm(readings, accession, outfname, transition_prob=transition_prob,
insert_emissions=insert_emissions, alphabet=pyhmmer.easel.Alphabet.amino())
calibrate_hmm(output)
with HMMFile(output) as hmm_file:
hmm = next(hmm_file)
return hmm
def score(hmms, sequences: "easel.SequenceFile", background=background):
# pipeline = Pipeline(alphabet, background=background)
# hits = pipeline.search_hmm(query=hmm, sequences=sequences)
done_seqs = 0
def progress(hmm, total):
nonlocal done_seqs
done_seqs+= 1
print(f'{round(done_seqs * 100/total)} %', end='\r')
if type(hmms) is not list:
hmms = [hmms]
temp_hits = pyhmmer.hmmer.hmmsearch(hmms, sequences, callback=progress,\
bias_filter=False)
all_hits = [next(temp_hits) for _ in range(len(hmms))]
temp_list = []
for h in all_hits:
temp_list.extend([(h.query_name.decode(), i.name.decode(), i.evalue, i.score) for i in h])
results = pd.DataFrame(temp_list, columns=['Query', 'Accession', 'E-value', 'Score'])
return results
def gen_stats(hmms, result_df):
tt = result_df.groupby(['Query', 'Accession'], \
sort=False,)[['E-value', 'Score', ]].max()
tt = tt.loc[tt.groupby(['Query'], sort=False)['E-value'].idxmin()].reset_index()
total_queries = len(hmms)
total_hits = tt.shape[0]
total_identified = tt[tt.Query == tt.Accession].shape[0]
return {'Total queries': total_queries, 'Hits': total_hits, 'Identified': total_identified}