-
Notifications
You must be signed in to change notification settings - Fork 0
/
MissingData.tex
executable file
·164 lines (134 loc) · 5.21 KB
/
MissingData.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
\documentclass[notes=no]{beamer}
%\documentclass[notes=only]{beamer}
%\documentclass[notes]{beamer}
\usetheme[white, compactlogo]{Lilly}
% begin definition
\def\conas{\stackrel{a.s.} {\rightarrow}} % conv. a.s.
\def\conP{\stackrel{\cal P} {\rightarrow}} % conv. in probability
\def\conD{\stackrel{\cal D} {\rightsquigarrow}} % conv. in distribution
\DeclareMathOperator*{\argmin}{argmin}
\DeclareMathOperator*{\argmax}{argmax}
\def\iid{\stackrel{ iid} {\sim}} % i.i.d
\def\hat{\widehat}
\def\tilde{\widetilde}
%general sets
\def\cal{\mathcal}
\def\calA{{\cal A}} %Action sets
\def\calB{{\cal B}} %Bounded set
\def\calC{{\cal C}} %Convex set
\def\calH{{\cal H}} %Hilbert Space
\def\calS{{\cal S}} %A regular set
\def\calNr{{\cal N}_r} %Neighborhood
\def\calX{{\cal X}} %Covariate space
\def\calF{{\cal F}} %Function space
\def\calD{{\cal D}} %decision rule
%special sets
\def\bbR{{\mathbb{R}}} %Real number
\def\bbN{{\mathbb{N}}}%Natural number
\def\bbQ{{\mathbb{Q}}} %Rational number
\def\bbZ{{\mathbb{Z}}} %Integer
%Matrix
\def\bA{{\bf A}}
\def\bB{{\bf B}}
\def\bC{{\bf C}}
\def\bD{{\bf D}}
\def\bH{{\bf H}}
\def\bI{{\bf I}}
\def\bJ{{\bf J}}
\def\bP{{\bf P}}
\def\bT{{\bf T}}
\def\bW{{\bf W}}
\def\bX{{\bf X}}
%vector
\def\balpha{{\boldsymbol \alpha}}
\def\bbeta{{\boldsymbol \beta}}
\def\btheta{{\boldsymbol \theta}}
\def\bzero{{\bf 0}}
\def\bone{{\bf 1}}
\def\bbf{{\bf f}}
\def\br{{\bf r}}
\def\by{{\bf y}}
%notations
\def\sign{{\mathrm{sign}}}
\def\var{{\mathrm{var}}}
\def\cov{{\mathrm{cov}}}
\def\ind{\perp\!\!\!\perp}
%others
\def\mif{\mathrm{if}\ }
\def\ow{\mathrm{otherwise}\ }
\def\st{\mathrm{subject\ to}\quad }
\def\diag{\mathrm{diag}}
\def\minimize{\mathrm{minimize}\quad }
\def\maximize{\mathrm{maximize}\quad }
\def\dom{{\rm dom}}
\title{On Missing Data} % Enter your title between curly braces
\author{Drafted by Haoda Fu, Ph.D.} % Enter your name between curly braces
\institute{Statistics for Data Scientists Series} % Enter your institute name between curly braces
\date{\today}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Why}
\begin{variableblock}{Why this topic is important}{bg=LillyGreen25,fg=black}{bg=LillyGreen75,fg=black}
Missing data are common problems for data scientists.
\end{variableblock}
\pause
\begin{variableblock}{Connections}{bg=LillyGreen25,fg=black}{bg=LillyGreen75,fg=black}
\begin{itemize}
\item Missing data and causal inference are closed connected and both are important to our digital health.
\item Different types of missing mechanism: missing completely at random, missing at random, and missing not at random.
\item Different methods to handle missing data.
\end{itemize}
\end{variableblock}
\end{frame}
\begin{frame}
\frametitle{Notation}
\begin{itemize}
\item $Y=(Y_{ij})$: complete data matrix.
\item $M=(M_{ij})$: missing-data indicator matrix.
\item $\phi$: unknown parameter.
\item $Y_{obs}$ and $Y_{mis}$: the observed and missing components of $Y$.
\item $f(\cdot)$: probability density function.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Missing Completely at Random (MCAR)}
\begin{definition}[MCAR]
MCAR is defined that the $M$ does not depend on $Y$,
\begin{align*}
f(M | Y, \phi) &= f(M|\phi), \quad \forall Y, \phi.
\end{align*}
\end{definition}
Note: this assumption does not mean that the pattern itself is random, but rather that the missingness does not depend on the data values.
\end{frame}
\begin{frame}
\frametitle{Missing at Random (MAR)}
\begin{definition}[MAR]
MAR is defined that the $M$ only depends on $Y_{obs}$,
\begin{align*}
f(M | Y, \phi) &= f(M|Y_{obs}, \phi), \quad \forall Y_{obs}, \phi.
\end{align*}
\end{definition}
Note: This assumption is weaker than the MCAR and it is the most widely used assumption for clinical trials.
\end{frame}
\begin{frame}
\frametitle{Missing Not at Random (MNAR)}
\begin{definition}[MNAR]
The mechanism is called MNAR if the distribution of $M$ depends on the $Y_{miss}$.
\end{definition}
Note: Assumptions are not verifiable. It is often used for robustness evaluation. Methods handle MNAR include pattern mixture models and selection models.
\end{frame}
\begin{frame}
\frametitle{Parametric Likelihood-Based Analysis Under MAR}
Let $\theta$ be the interest parameter, i.e. $f(Y|\theta) = f(Y_{obs}, Y_{mis}|\theta)$, and $\psi$ be the parameter for missing mechanisms.
\begin{align*}
f(Y,M|\theta, \psi) &= f(Y|\theta) f(M|Y,\psi)\\
f(y_{obs},m|\theta, \psi)&= \int f(y_{obs}, Y_{mis}|\theta) f(m|y_{obs}, Y_{mis},\psi) d Y_{mis} \\
&= f(m|y_{obs}, \psi) \int f(y_{obs},Y_{mis}|\theta) dY_{mis}\\
&\triangleq f(m|y_{obs}, \psi) f(y_{obs}|\theta)
\end{align*}
Remarks: the lower case means the observed value. The $dY_{mis}$ can only be calculated when $M$ is observed. Also, $f(y_{obs}|\theta)$ is not the same pdf as if we only observed iid data, so that we use $\triangleq$ notation instead of regular equal to, because we define $f(y_{obs}|\theta) = \int f(y_{obs},Y_{mis}|\theta) dY_{mis}$.
\end{frame}
\end{document}