-
Notifications
You must be signed in to change notification settings - Fork 12
/
viralrecall.py
742 lines (618 loc) · 28.4 KB
/
viralrecall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
#!/usr/bin/env python
import sys, os, re, shlex, subprocess, pandas, numpy, itertools, argparse, time
from collections import defaultdict
from Bio import SeqIO
from operator import itemgetter
from itertools import islice
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import math
#pfam = "hmm/pfam.reduced.hmm"
# predict proteins from genome FNA file
def predict_proteins(genome_file, project, redo, batch):
seqdict = SeqIO.to_dict(SeqIO.parse(genome_file, "fasta"))
if len(seqdict) < 1:
raise (genome_file+" does not appear to be in FASTA format!")
file_name = os.path.basename(genome_file)
file_base = os.path.splitext(file_name)[0]
if batch:
path_base = os.path.splitext(project)[0]
protein_file = os.path.join(path_base, file_base+".faa")
nuc_file = os.path.join(path_base, file_base+".fasta")
else:
base_name = os.path.basename(file_base)
#protein_file = os.path.join(project, re.sub('.fna', '.faa', base_name))
protein_file = os.path.join(project, project+".faa")
nuc_file = os.path.join(project, project+".fasta") # Added
cmd = "prodigal -p meta -i "+ genome_file +" -a "+ protein_file + " -d "+ nuc_file
#print(cmd)
cmd2 = shlex.split(cmd)
if not redo:
subprocess.call(cmd2, stdout=open("out.txt", "w"), stderr=open("err.txt", "w"))
return protein_file
# get vog hmm descriptions
def get_annot(database):
if database == "general":
input = open("hmm/vog.annotations.tsv", "r")
vdesc = defaultdict(lambda:"NA")
for i in input.readlines():
line = i.rstrip()
tabs = line.split("\t")
vog = tabs[0]
desc = tabs[4]
vdesc[vog] = desc
return vdesc
else:
input = open("hmm/gvog_annotation.tsv", "r")
vdesc = defaultdict(lambda:"NA")
for i in input.readlines():
line = i.rstrip("\n")
tabs = line.split("\t")
vog = tabs[0]
desc = tabs[5]
vdesc[vog] = desc
return vdesc
# get accessions of HMM hits to exclude from bit score calculations
def get_accs(infile):
acc2norm = defaultdict(lambda:float(1))
handle = open(infile, "r")
for i in handle.readlines():
if i.startswith("ACC"):
pass
else:
line = i.rstrip()
tabs = line.split("\t")
acc2norm[re.sub(".trim$", "", tabs[0])] = float(tabs[3])
#acc_list.append(line)
return(acc2norm)
# get SeqIO dictionary of input nucleic acid FASTA file
def get_fasta(genome_file):
genome_dict = SeqIO.to_dict(SeqIO.parse(genome_file, "fasta"))
contig2length = {}
for j in genome_dict:
contig2length[j] = len(genome_dict[j])
return genome_dict, contig2length
# get final prophage coordinates to output once desired flanking regions are accommodated
def get_finalcoords(contig_coords, subset_coords, flanking):
newstart = int(subset_coords[0]) - int(flanking)
if newstart < int(contig_coords[0]):
newstart = int(0)
newend = int(subset_coords[1]) + int(flanking)
if newend > int(contig_coords[1]):
newend = int(contig_coords[1])
#print(contig_coords, subset_coords, flanking, newstart, newend)
return((newstart, newend))
# define sliding window function
def window(seq, n=25):
"Returns a sliding window (of width n) over data from the iterable"
" s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... "
it = iter(seq)
result = tuple(islice(it, n))
if len(result) == n:
yield result
for elem in it:
result = result[1:] + (elem,)
yield result
# define function to acquire protein statistics from the faa file
def get_seqlist(input_file, project):
prot2genome = {}
record_dict = {}
seqlist = {}
strandlist = {}
prot2start = {}
prot2end = {}
prot2contig = {}
for i in SeqIO.parse(input_file, "fasta"):
record_dict[i.id] = i
seqlist[i.id] = len(i.seq)
desc = i.description
space = desc.split(" ")
start = space[2]
end = space[4]
strand = space[6]
strandlist[i.id] = strand
prot2start[i.id] = start
prot2end[i.id] = end
prot2genome[i.id] = project
protein = i.id
protlist = protein.split("_")
contig = "_".join(protlist[0:len(protlist)-1])
prot2contig[protein] = contig
return prot2genome, seqlist, strandlist, prot2start, prot2end, prot2contig, record_dict
# run HMMER3
def run_hmmer(input_file, db, suffix, cpus, redo, evalue):
output_file = re.sub(".faa$", suffix, input_file)
#print(output_file)
if suffix == ".pfamout":
cmd = "hmmsearch --cut_nc --cpu "+ cpus +" --tblout "+ output_file +" hmm/pfam.hmm "+ input_file
#print(cmd)
elif suffix == ".vogout":
if db == "general":
vogdb = "hmm/vogdb.hmm"
cmd = "hmmsearch --cpu "+ cpus +" --tblout "+ output_file +" "+ vogdb +" "+ input_file
elif db == "GVOG":
vogdb = "hmm/gvog.hmm"
cmd = "hmmsearch --cpu "+ cpus +" --tblout "+ output_file +" "+ vogdb +" "+ input_file
#print(cmd)
elif db == "marker":
vogdb = "hmm/NCLDV_markers.hmm"
cmd = "hmmsearch --cpu "+ cpus +" --tblout "+ output_file +" "+ vogdb +" "+ input_file
# #print(cmd)
#print(db)
cmd2 = shlex.split(cmd)
if not redo and not db == "marker":
#pass
#print(cmd)
subprocess.call(cmd2, stdout=open("out.txt", "w"), stderr=open("err.txt", "w"))
#os.remove("out.txt")
return output_file
# define function for parsing HMMER3 output
def parse_hmmout(hmmout, evalue):
input = open(re.sub("\/$", "", hmmout), "r")
hit_dict = defaultdict(lambda:"NA")
bit_dict = defaultdict(float)
hit2pfam = {}
gvog2norm = get_accs("acc/gvog_summary.tsv")
pfam2norm = get_accs("acc/pfam_summary.tsv")
for i in input.readlines():
line = i.rstrip()
if line.startswith("#"):
pass
else:
newline = re.sub("\s+", "\t", line)
tabs = newline.split("\t")
protein = tabs[0]
hit = re.sub(".trim$", "", tabs[2])
pfamhit = tabs[3]
#print pfamhit
eval = float(tabs[4])
#print pfamhit, eval
if float(tabs[5]) > 0:
if "vogout" in hmmout:
score = (math.sqrt(float(tabs[5]))) * gvog2norm[hit]
#score = float(tabs[5]) * gvog2norm[hit]
#print (protein, tabs[5], math.sqrt(float(tabs[5])), gvog2norm[hit], score, hit)
else:
score = (math.sqrt(float(tabs[5]))) * pfam2norm[pfamhit]
#score = float(tabs[5]) * pfam2norm[pfamhit]
#print(protein, pfamhit, tabs[5], pfam2norm[pfamhit], score)
else:
score = 0
if "vogout" in hmmout:
if score > bit_dict[protein] and eval <= float(evalue):
bit_dict[protein] = score
hit_dict[protein] = hit
hit2pfam[protein] = pfamhit
else:
pass
else:
if score > bit_dict[protein]:
bit_dict[protein] = score
hit_dict[protein] = hit
hit2pfam[protein] = pfamhit
else:
pass
return hit_dict, bit_dict
# run HMMER3 on marker genes only
def marker_hmmer(input_file, cpus, redo):
output_file = re.sub(".faa", ".markerout", input_file)
cmd = "hmmsearch --cpu "+ cpus +" --tblout "+ output_file +" hmm/NCLDV_markers.hmm "+ input_file
cmd2 = shlex.split(cmd)
if not redo:
subprocess.call(cmd2, stdout=open("out.txt", "w"), stderr=open("err.txt", "w"))
#os.remove("out.txt")
return output_file
def parse_markers(hmmout):
input = open(hmmout, "r")
score_dict = {"A32":float(80), "D5":float(80), "SFII":float(100), "mcp":float(80), "mRNAc":float(80), "PolB":float(200), "RNAPL":float(200), "RNAPS":float(200), "RNR":float(80), "VLTF3":float(80)}
contig2hits = defaultdict(list)
protein2hits = defaultdict(lambda:"-")
for i in input.readlines():
line = i.rstrip()
if line.startswith("#"):
pass
else:
newline = re.sub("\s+", "\t", line)
tabs = newline.split("\t")
protein = tabs[0]
hit = tabs[2]
score = float(tabs[5])
contig = re.sub("_\d+$", "", protein)
if score > score_dict[hit]:
#print(protein, contig, hit, score)
contig2hits[contig].append(hit +":"+ str(score))
protein2hits[protein] = hit +":"+ str(score)
contig2final = defaultdict(lambda:"-")
for n in contig2hits:
outstr = ",".join(contig2hits[n])
contig2final[n] = outstr
#print(contig2final)
return contig2final, protein2hits
# define function to get continuous genome coordinates in case of multiple contigs/plasmids
def cumsum2(list1, contig2length, prot2start):
baseval = 0
cumsum = []
already_done = []
for index,i in enumerate(list1):
start = float(prot2start[i])
contig = re.sub("_\d+$", "", i)
if len(already_done) < 1:
cumsum.append(start)
if contig in already_done:
pass
else:
already_done.append(contig)
else:
if contig in already_done:
pass
else:
already_done.append(contig)
#print(already_done)
baseval = 0
for j in already_done[0:len(already_done)-1]:
baseval += contig2length[j]
new = baseval + start
cumsum.append(new)
#print(new)
return cumsum
#print(index, i)
# if index == 0:
# cumsum.append(start)
# elif start < float(prot2start[list1[index-1]]):
# contig = re.sub("_\d+$", "", i)
#print(contig, contig2length[contig])
#baseval = cumsum[index-1]
# baseval = contig2length[contig] + baseval
# new = start + baseval
# cumsum.append(new)
# print(i, prot2start[i], new, baseval)
#print(i, baseval)
# else:
# new = start + baseval
# cumsum.append(new)
#return cumsum
# get genomic regions that look like phage
def get_regions(list1):
index_list = []
for index,value in enumerate(list1):
if index == 0:
pass
#elif value == 0:
# pass
elif value >= 0 and list1[index-1] >= 0:
newval = index-1
if newval in index_list:
pass
else:
index_list.append(index-1)
index_list.append(index)
return index_list
# main function that runs the program
def run_program(input, project, database, window, phagesize, minscore, minhit, evalue, cpus, plotflag, redo, flanking, batch, summary_file, contiglevel):
# create output directories
foldername = os.path.splitext(project)[0]
if os.path.isdir(foldername):
#raise Exception(project+' already exists')
#print("\n*******************************************************************************\nOverwriting existing project folder! Waiting 5 seconds so you have time to exit\n*******************************************************************************")
#time.sleep(5)
pass
else:
os.mkdir(foldername)
# remove previous files before re-calculating results
if redo:
for files in os.listdir(foldername):
if files.endswith(".tsv") or "_viral_region_" in files:
os.remove(os.path.join(foldername, files))
if batch:
relpath = os.path.split(project)[1]
relpathbase = os.path.splitext(relpath)[0]
base = os.path.splitext(project)[0]
#print(project, base, relpath, relpathbase)
# predict proteins, run HMMER3 searches, and parse outputs
#print(input, project, redo, batch)
protein_file = predict_proteins(input, project, redo, batch)
if database == "marker":
#vog_out = run_hmmer(protein_file, database, ".vogout", cpus, redo, evalue)
#pfam_out = run_hmmer(protein_file, "hmm/pfam.hmm", ".pfamout", cpus, redo, evalue)
pfam_hit = defaultdict(lambda:"no-search-performed")
pfam_bit = defaultdict(lambda:float(0))
vog_hit = defaultdict(lambda:"no-search-performed")
vog_bit = defaultdict(lambda:float(0))
else:
if not os.path.exists("hmm/gvog.hmm") or not os.path.exists("hmm/vogdb.hmm"):
raise("Can't seem to find the hmm databases in the hmm/ directory. Please see GitHub for download instructions")
vog_out = run_hmmer(protein_file, database, ".vogout", cpus, redo, evalue)
pfam_out = run_hmmer(protein_file, "hmm/pfam.hmm", ".pfamout", cpus, redo, evalue)
vog_hit, vog_bit = parse_hmmout(vog_out, evalue)
pfam_hit, pfam_bit = parse_hmmout(pfam_out, evalue)
marker_out = marker_hmmer(protein_file, cpus, redo)
contig2markers, protein2markers = parse_markers(marker_out)
vdesc = get_annot(database)
vog_annot = {}
for i in vog_hit:
vog_annot[i] = vdesc[vog_hit[i]]
# get protein features from Prodigal FASTA headers
prot2genome, seqs, strands, prot2start, prot2end, prot2contig, record_dict = get_seqlist(protein_file, os.path.basename(project))
# get dictionary of nucleic acid sequences
genome_dict, contig2length = get_fasta(input)
# set up Pandas DataFrame of the full genome annotation
names = ['genome', 'replicon', 'vog', 'virbit', 'vdesc', 'pfam', 'pfambit', 'protlength', 'strand', 'start', 'end']
df = pandas.DataFrame()
for index, i in enumerate([prot2genome, prot2contig, vog_hit, vog_bit, vog_annot, pfam_hit, pfam_bit, seqs, strands, prot2start, prot2end]):
s1 = pandas.DataFrame(pandas.Series(i, name = names[index]))
df = pandas.concat([df, s1], axis=1, sort=True)
#print(df)
# fill all NA values with 0, ensuring that proteins with no hit to either Pfam or VOG are counted as having a bit score of 0. The "prophage score" is then calculated as the difference between the Pfam and VOG scores.
df.fillna(float(0), inplace=True, axis=1)
df["start"] = pandas.to_numeric(df['start'])
df["end"] = pandas.to_numeric(df['end'])
df = df.sort_values(by=['replicon', 'start'])
df["score"] = df["virbit"] - df["pfambit"]
# now for the plot we need a contantly increasing axis so we don't plot contigs/plasmids over each other
starts = df["start"].tolist()
starts = [float(i) for i in starts]
cumsum = []
#df["cumsum"] = cumsum2(df["start"], contig2length, prot2start)
df["cumsum"] = cumsum2(df.index, contig2length, prot2start)
# for each replicon we need to go through and calculate a rolling mean of the prophage scores.
contigs = sorted(set(prot2contig.values()))
contig_bounds = []
df2 = pandas.DataFrame()
for index, contig in enumerate(contigs):
# we need to calculate the rolling mean separately for each replicon so we don't get overlap between non-contiguous sequences
subset = pandas.DataFrame(df.loc[df['replicon'] == contig])
subset["rolling"] = subset["score"].rolling(window, min_periods=3, center=True).mean()
df2 = pandas.concat([df2, subset])
ends = subset["end"].tolist()
ends = [float(i) for i in ends]
contig_end = max(ends)
#print(contig_end, index)
# the contig bounds are used later for plotting, so we know where replicons end
if len(contig_bounds) > 0:
new_end = float(contig_end) + float(contig_bounds[index-1])
else:
new_end = contig_end
contig_bounds.append(new_end)
#df2 = df2.sort_values(by=["cumsum"])
df2.fillna(0, inplace=True, axis=1)
reps = set(df2["replicon"].tolist())
# initialize summary dataframe that we will append to as we find viral regions
summary = pandas.DataFrame()
tally = 0
# proceed here if all you want is the contig-level stats (no info about viral regions)
if contiglevel:
for rep in reps:
df3 = df2.loc[df2['replicon'] == rep]
tally +=1
#indices = list(map(itemgetter(1), group))
#subset = df3.ix[indices]
minval = min(df3["start"])
maxval = max(df3["end"])
vogacc = df3["vog"].tolist()
num_prot = len(df3["protlength"].tolist())
score = numpy.mean(df3["score"])
voghits = len([i for i in df3["virbit"].tolist() if i > 0])
pfamhits = len([i for i in df3["pfambit"].tolist() if i > 0])
length = int(float(maxval) - float(minval))
replicon = rep
record = genome_dict[replicon]
contig_length = len(record.seq)
markerhits = contig2markers[rep]
data = pandas.Series([replicon, contig_length, score, num_prot, voghits, pfamhits, markerhits], name=project)
summary = summary.append(data)
# output summary files
if batch:
df2["vog"] = df2["vog"].replace(0, "no_hit")
df2["vdesc"] = df2["vdesc"].replace(0, "no_hit")
df2["pfam"] = df2["pfam"].replace(0, "no_hit")
df2.to_csv(os.path.join(base, relpathbase+".full_annot.tsv"), sep="\t", index_label="protein_ids")
if summary.shape[1] > 0:
summary.columns = ['replicon', 'contig_length', 'score', 'num_ORFs', 'num_viralhits', 'num_pfamhits', 'markerhits']
#base = os.path.basename(project)
summary_file.write(base +"\t"+ str(summary.shape[0]) +"\n")
summary.to_csv(os.path.join(base, relpathbase+".summary.tsv"), sep="\t", index_label="viral_regions")
else:
#base = os.path.basename(project)
summary_file.write(base +"\t0\n")
else:
if summary.shape[1] > 0:
summary.columns = ['replicon', 'contig_length', 'score', 'num_ORFs', 'num_viralhits', 'num_pfamhits', 'markerhits']
summary.to_csv(os.path.join(project, project+".summary.tsv"), sep="\t", index_label="project")
if database == "marker":
df2["vog"] = df2["vog"].replace(0, "no-search-performed")
df2["vdesc"] = df2["vdesc"].replace(0, "no-search-performed")
df2["pfam"] = df2["pfam"].replace(0, "no-search-performed")
else:
df2["vog"] = df2["vog"].replace(0, "no_hit")
df2["vdesc"] = df2["vdesc"].replace(0, "no_hit")
df2["pfam"] = df2["pfam"].replace(0, "no_hit")
df2.to_csv(os.path.join(project, project+".full_annot.tsv"), sep="\t", index_label="protein_ids")
# otherwise proceed with regular viralrecall to identify virus-like regions
else:
for rep in reps:
df3 = df2.loc[df2['replicon'] == rep]
#print(rep, df3.shape)
# now let's get the regions of the entire genome file that have a net positive prophage signal
reg = get_regions(df3["rolling"].tolist())
reg = [int(i) for i in reg]
# now let's subset the genome to get only the prophage regions, and output that so we can look at it later if we want
#subset = df3.ix[reg]
subset = df3.iloc[reg]
if batch:
#print(os.path.join(project, base+".vregion_annot.tsv"), project, base)
subset.to_csv(os.path.join(base, relpathbase+".vregion_annot.tsv"), sep='\t', index_label="protein_ids")
else:
subset.to_csv(os.path.join(project, project+".vregion_annot.tsv"), sep='\t', index_label="protein_ids")
# now let's get a summary of each prophage region, and output that
for key, group in itertools.groupby(enumerate(reg), key=lambda ix:ix[0]-ix[1]):
indices = list(map(itemgetter(1), group))
#subset = df3.ix[indices]
subset = df3.iloc[indices]
minval = min(subset["start"])
maxval = max(subset["end"])
#print(minval, maxval)
#print(key, map(itemgetter(1), group), group, indices, [replicons[k] for k in indices])
#print([replicons[k] for k in indices])
vogacc = subset["vog"].tolist()
score = numpy.mean(subset["score"])
voghits = len([i for i in subset["virbit"].tolist() if i > 0])
length = int(float(maxval) - float(minval))
replicon = subset['replicon'].tolist()[0]
markers = [protein2markers[j] for j in list(subset.index) if not protein2markers[j] == "-"]
markerlist = ",".join(markers)
#print(minval, maxval, replicon, score, length)
# Let's filter the putatige prophage by the parameters used in the input.
if length >= phagesize and score > minscore and voghits >= minhit:
#print(minval, maxval, replicon, score, length)
tally +=1
record = genome_dict[replicon]
contig_length = len(record.seq)
data = pandas.Series([replicon, minval, maxval, length, contig_length, score, voghits, len(indices), markerlist], name="viral_region_"+str(tally))
summary = summary.append(data)
#print(summary)
# now let's output the proteins and nucleic acid sequence of the putative prophage
if batch:
#base = os.path.basename(project)
protein_file = os.path.join(base, relpathbase+"_viral_region_"+str(tally)+".faa")
else:
protein_file = os.path.join(project, project+"_viral_region_"+str(tally)+".faa")
proteins = list(subset.index)
records = [record_dict[record] for record in record_dict.keys() if record in proteins]
SeqIO.write(records, protein_file, "fasta")
if batch:
#base = os.path.basename(project)
nucl_file = open(os.path.join(base, relpathbase+"_viral_region_"+str(tally)+".fna"), "w")
else:
nucl_file = open(os.path.join(project, project+"_viral_region_"+str(tally)+".fna"), "w")
record = genome_dict[replicon]
seq = record.seq
newcoords = get_finalcoords((0, len(record.seq)), (minval, maxval), flanking)
prophage_region = seq[newcoords[0]:newcoords[1]]
nucl_file.write(">"+ project+"_viral_region_"+str(tally) +" "+ record.id +"\n"+ str(prophage_region))
# if we find any prophage let's output a summary file
if batch:
df2["vog"] = df2["vog"].replace(0, "no_hit")
df2["vdesc"] = df2["vdesc"].replace(0, "no_hit")
df2["pfam"] = df2["pfam"].replace(0, "no_hit")
df2.to_csv(os.path.join(base, relpathbase+".full_annot.tsv"), sep="\t", index_label="protein_ids")
if summary.shape[1] > 0:
summary.columns = ['replicon', 'start_coord', 'end_coord', 'vregion_length', 'contig_length', 'score', 'num_viralhits', 'num_ORFs', 'markers']
#base = os.path.basename(project)
summary_file.write(base +"\t"+ str(summary.shape[0]) +"\n")
summary.to_csv(os.path.join(base, relpathbase+".summary.tsv"), sep="\t", index_label="viral_regions")
else:
#base = os.path.basename(project)
summary_file.write(base +"\t0\n")
else:
if summary.shape[1] > 0:
summary.columns = ['replicon', 'start_coord', 'end_coord', 'vregion_length', 'contig_length', 'score', 'num_viralhits', 'num_ORFs', 'markers']
summary.to_csv(os.path.join(project, project+".summary.tsv"), sep="\t", index_label="viral_regions")
else:
summary_out = open(os.path.join(project, project+".summary.tsv"), "w")
summary_out.write('replicon\tstart_coord\tend_coord\tvregion_length\tcontig_length\tscore\tnum_viralhits\tnum_ORFs\tmarkers\n')
if database == "marker":
df2["vog"] = df2["vog"].replace(0, "no-search-performed")
df2["vdesc"] = df2["vdesc"].replace(0, "no-search-performed")
df2["pfam"] = df2["pfam"].replace(0, "no-search-performed")
else:
df2["vog"] = df2["vog"].replace(0, "no_hit")
df2["vdesc"] = df2["vdesc"].replace(0, "no_hit")
df2["pfam"] = df2["pfam"].replace(0, "no_hit")
df2.to_csv(os.path.join(project, project+".full_annot.tsv"), sep="\t", index_label="protein_ids")
#######################################################
################# Print figure ########################
if (plotflag):
if database == "marker":
print("Plotting options disabled when db = marker!")
else:
f = plt.figure(figsize=(15,4))
maxbound = round(max(df2["cumsum"])/1000000) * 1000000
maxbound_label = int(maxbound / 1000000)
bound_labels = list(range(int(0), maxbound_label+1))
bounds = [item*1000000 for item in bound_labels]
val = numpy.nanmax(df2["rolling"])
minval = numpy.nanmin(df2["rolling"])
#print(bound_labels, bounds, contig_bounds, val, minval)
if len(contig_bounds) > 1:
#print(contig_bounds, bound_labels)
plt.vlines(contig_bounds, 0, val, colors="grey", zorder=20, linestyles = "dotted") #, linewidth=0.9)
plt.plot(df2["cumsum"], df2["rolling"], color="grey")
#plt.xticks([])
plt.xlabel("Genome Position")
plt.ylabel("Score")
plt.fill_between(df2["cumsum"], df2["rolling"], where=(df2["rolling"] >= 0), facecolor="dodgerblue", alpha=0.8, interpolate=True)
plt.fill_between(df2["cumsum"], df2["rolling"], where=(df2["rolling"] < 0), facecolor="firebrick", alpha=0.8, interpolate=True)
#plt.xticks(bounds, bound_labels)
plt.ylim(minval, numpy.nanmax(df2["rolling"]))
if batch:
f.savefig(os.path.join(base, relpathbase+".pdf"), bbox_inches='tight')
else:
f.savefig(os.path.join(project, project+".pdf"), bbox_inches='tight')
plt.close()
#######################################################
########################################################################
##### use argparse to run through the command line options given #######
########################################################################
def main(argv=None):
args_parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description="ViralRecall v. 2.0: A flexible command-line tool for predicting NCLDV-like regions in genomic data \nFrank O. Aylward, Virginia Tech Department of Biological Sciences <faylward at vt dot edu>", epilog='*******************************************************************\n\n*******************************************************************')
args_parser.add_argument('-i', '--input', required=True, help='Input FASTA file (ending in .fna)')
args_parser.add_argument('-p', '--project', required=True, help='project name for outputs')
args_parser.add_argument('-db', '--database', required=False, default="GVOG", help='Viral HMM database to use. Options are "general" for the general VOG db, "GVOG" for the GVOG db, and "marker" for searching only a set of 10 conserved NCLDV markers (good for screening large datasets). See README for details')
args_parser.add_argument('-w', '--window', required=False, default=int(15), help='sliding window size to use for detecting viral regions (default=15)')
args_parser.add_argument('-m', '--minsize', required=False, default=int(10), help='minimum length of viral regions to report, in kilobases (default=10)')
args_parser.add_argument('-s', '--minscore', required=False, default=int(1), help='minimum score of viral regions to report, with higher values indicating higher confidence (default=1)')
args_parser.add_argument('-g', '--minhit', required=False, default=int(4), help='minimum number of viral hits that each viral region must have to be reported (default=4)')
args_parser.add_argument('-e', '--evalue', required=False, default=str(1e-10), help='e-value that is passed to HMMER3 for the VOG hmmsearch (default=1e-10)')
args_parser.add_argument('-fl', '--flanking', required=False, default=int(0), help='length of flanking regions upstream and downstream of the viral region to output in the final .fna files (default=0)')
args_parser.add_argument('-t', '--cpus', required=False, default=str(1), help='number of cpus to use for the HMMER3 search')
args_parser.add_argument('-b', '--batch', type=bool, default=False, const=True, nargs='?', help='Batch mode: implies the input is a folder of .fna files that each will be run iteratively')
args_parser.add_argument('-r', '--redo', type=bool, default=False, const=True, nargs='?', help='run without re-launching prodigal and HMMER3 (for quickly re-calculating outputs with different parameters if you have already run once)')
args_parser.add_argument('-c', '--contiglevel', type=bool, default=False, const=True, nargs='?', help='calculate contig/replicon level statistics instead of looking at viral regions (good for screening contigs)')
args_parser.add_argument('-f', '--figplot', type=bool, default=False, const=True, nargs='?', help='Specify this flag if you would like a plot of the viral-like regions with the output')
args_parser.add_argument('-v', '--version', action='version', version='ViralRecall v. 2.1')
args_parser = args_parser.parse_args()
# set up object names for input/output/database folders
input = args_parser.input
project = args_parser.project
database = args_parser.database
window = int(args_parser.window)
phagesize = int(args_parser.minsize)*1000
minscore = int(args_parser.minscore)
minhit = int(args_parser.minhit)
evalue = str(args_parser.evalue)
cpus = args_parser.cpus
plotflag = args_parser.figplot
redo = args_parser.redo
contiglevel = args_parser.contiglevel
flanking = args_parser.flanking
batch = args_parser.batch
project = project.rstrip("/")
if batch:
if os.path.isdir(project):
pass
else:
os.mkdir(project)
summary_file = open(os.path.join(project, "batch_summary.txt"), "w")
summary_file.write("genome\tcontigs_tested\n")
if os.path.isdir(project):
pass
else:
os.mkdir(project)
file_list = os.listdir(input)
for i in file_list:
#if i.endswith(".fna"):
#name = re.sub(".fna", "", i)
newproject = os.path.join(project, i)
#newproject = os.path.splitext(newproject)[0]
newinput = os.path.join(input, i)
print("Running viralrecall on "+ i + " and output will be deposited in "+ newproject)
run_program(newinput, newproject, database, window, phagesize, minscore, minhit, evalue, cpus, plotflag, redo, flanking, batch, summary_file, contiglevel)
else:
summary_file = 1
run_program(input, project, database, window, phagesize, minscore, minhit, evalue, cpus, plotflag, redo, flanking, batch, summary_file, contiglevel)
return 0
if __name__ == '__main__':
status = main()
sys.exit(status)
# end