-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
595 lines (500 loc) · 17.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
---
layout: deck
---
{% assign deck = site.data.deck %}
$${% include tex-header.tex %}$$
{% slide : Two dimensional systems %}
<div class="outline first">
<h3><a href="#spin-lifetime">Spin lifetime and Hanle curve fitting</a></h3>
{% image spin-lifetime/device.svg %}
</div>
{% slide div.outline.last %}
<h3><a href="#dichalcogenides">Superconducting phases of monolayer transition-metal dichalcogenides</a></h3>
<div class="lattice-image"></div>
{% endslide %}
{% endslide %}
{% slide#spin-lifetime : Spin lifetime %}
<div>
<h3>Outline</h3>
<ol>
<li>Motivation</li>
<li>Model and solution</li>
<li>Hanle curve fitting</li>
<li>Regimes and results</li>
</ol>
</div>
{% slide div %}
<h3>Motivation</h3>
<ol>
<li>Theoretical lifetime predictions longer than measured values:
\( \text{ms} \) vs. \( \text{ps} \)</li>
<li>Finite contact resistance mismatch: a potential candidate</li>
<li>Unified analytic solution for fitting data in all limits</li>
</ol>
{% endslide %}
{% image spin-lifetime/device.svg %}
<p>{% reference PhysRevB.89.245436 --file spintronics %}</p>
{% endslide %}
{% capture slide_fits_1 %}
{% slide.fits : Fits %}
<div>
<h3>Tunneling contacts</h3>
<figure>
{% image spin-lifetime/fig_4a_difference.svg %}
<figcaption>Fit to parallel field data from Fig. 4a of W. Han, et al.</figcaption>
</figure>
<ul class="equation">
{% include spin-lifetime-values.html id="a" %}
</ul>
</div>
<div>
<h3>Tunneling contacts</h3>
<figure>
{% image spin-lifetime/fig_4b_difference.svg %}
<figcaption>Fit to parallel field data from Fig. 4b of W. Han, et al.</figcaption>
</figure>
<ul class="equation">
{% include spin-lifetime-values.html id="b" %}
</ul>
</div>
<p>{% reference PhysRevLett.105.167202 --file spintronics %}</p>
{% endslide %}
{% endcapture %}
{{ slide_fits_1 }}
{% slide.geometry : Device geometry %}
<div class="device-image"></div>
<ul class="equation first">
<li>\( L \) : contact spacing</li>
<li>\( D \) : diffusion constant</li>
<li>\( τ \) : spin lifetime</li>
<li>\( λ = \sqrt{D τ} \)</li>
<li>\( ω = g μ_B B / ħ \)</li>
</ul>
<ul class="equation last">
<li>\( μ_s = \frac{1}{2} \left( μ_↑ - μ_↓ \right) \)</li>
<li>\( J_{↑↓} = σ_{↑↓} ∇μ_{↑↓} \)</li>
<li>\( J_{↑↓}^C = Σ_{↑↓} \left( μ^N_{↑↓} - μ^F_{↑↓} \right)_c \)</li>
<li>\( J = J_↑ + J_↓ \)</li>
<li>\( J_s = J_↑ - J_↓ \)</li>
</ul>
<div>
<p>$$D ∇^2 μ_s - \frac{μ_s}{τ} + ω × μ_s = 0$$</p>
<p>$$V ∝ μ_s^N(x = L)$$</p>
<p>$$R_\text{NL} = V / I$$</p>
</div>
<p>
{% reference ActaPhysicaSlovaca.57.4_5.565-907 --file spintronics %}<br />
{% reference PhysRevB.37.5312 --file spintronics %}<br />
{% reference PhysRevB.67.052409 --file spintronics %}<br />
{% reference PhysRevB.80.214427 --file spintronics %}
</p>
{% endslide %}
{% slide : Motivation for solution %}
<h3>Existing results</h3>
<ul>
<li>All existing analytic expressions ignore contact resistance</li>
<li>Assume infinite resistance for convenience</li>
<li>Integral form widely used but difficult to fit</li>
<li>Only a numeric treatment of finite contact resistance</li>
</ul>
<p>$$\rNL ∝ \re{\frac{e^{- \left( L / λ \right) \sqrt{1 + i ω τ}}}{2 \sqrt{1 + i ω τ}}}$$</p>
<p>$$\rNL ∝ \int_0^∞ \frac{1}{\sqrt{4 π D t}}
\exp{\left[ - \frac{L^2}{4 D t} \right]} e^{-t / τ} \cos{ω t} \: dt$$</p>
<h3>Our approach</h3>
<ul>
<li>Finite contact resistance</li>
<li>Exact analytic expression</li>
<li>Matches previous approaches in appropriate limits</li>
</ul>
{% endslide %}
{% slide.solution : Non-local resistance %}
<p>$$Δ \rNL = 2 P^2 R_N \left\lvert f \right\rvert$$</p>
<ul class="equation">
<li>\( r = \frac{R_F + R_C}{\rSQ} W \)</li>
<li>\( \rSQ = W / σ^N \)</li>
<li>\( R_N = \frac{λ}{W L} \frac{1}{σ^N} \)</li>
</ul>
<p class="long-equation">
$$
\begin{multline}
f = \re \left\{ \left(
\vphantom{
\frac{
\sinh{ \left[ \left( L / λ \right) \sqrt{1 + i ω τ} \right] }
}{\sqrt{1 + i ω τ}}
}
2 \left[ \sqrt{1 + i ω τ} + (λ / r) \right]
e^{\left( L / λ \right) \sqrt{1 + i ω τ}}
\right. \right. \\ \left. \left.
+ (λ / r)^2 \frac{
\sinh{ \left[ \left( L / λ \right) \sqrt{1 + i ω τ} \right] }
}{\sqrt{1 + i ω τ}}
\right)^{-1} \right\} .
\end{multline}
$$
</p>
<p>Only scales that appear in \( f \)</p>
<ul class="equation">
<li>\( L / λ \)</li>
<li>\( λ / r \)</li>
<li>\( ω τ \)</li>
</ul>
<p>{% reference PhysRevB.89.245436 --file spintronics %}</p>
{% endslide %}
{{ slide_fits_1 }}
{% slide.fits : Fits %}
<div>
<h3>Pinhole contacts</h3>
<figure>
{% image spin-lifetime/fig_4c_parallel.svg %}
<figcaption>Fit to parallel field data from Fig. 4c of W. Han, et al.</figcaption>
</figure>
<ul class="equation">
{% include spin-lifetime-values.html id="c" %}
</ul>
</div>
<div>
<h3>Transparent contacts</h3>
<figure>
{% image spin-lifetime/fig_4d_difference.svg %}
<figcaption>Fit to parallel field data from Fig. 4d of W. Han, et al.</figcaption>
</figure>
<ul class="equation">
{% include spin-lifetime-values.html id="d" %}
</ul>
</div>
<p>{% reference PhysRevLett.105.167202 --file spintronics %}</p>
{% endslide %}
{% slide.regimes : Regimes %}
<div>
<h3>Zero field</h3>
<p>$$Δ \rNL = \left( P_Σ^L \right)^2 R_N e^{- L / λ}$$</p>
</div>
<div>
<h3>Tunneling contacts</h3>
<p>$$f^∞ = \re{\frac{e^{- \left( L / λ \right) \sqrt{1 + i ω τ}}}{2 \sqrt{1 + i ω τ}}}$$</p>
</div>
<h3>Fits independent of lifetime</h3>
<p>\( λ / r ≫ \sqrt{ω τ} ≫ 1 \)</p>
<p>Zeros determined by
$$L \sqrt{\frac{D}{2 ω}} + \frac{π}{4} = \frac{n π}{2}$$</p>
<p>{% reference PhysRevB.89.245436 --file spintronics %}</p>
{% endslide %}
{% slide.fits : Fits: \( τ \) Independent Limit %}
<div>
<h3>Transparent contacts</h3>
<figure>
{% image spin-lifetime/fig_4d_difference_large_lifetime.svg %}
<figcaption>Fit to parallel field data from Fig. 4d of W. Han, et al.</figcaption>
</figure>
<ul class="equation">
{% include spin-lifetime-values.html id="d_1" %}
</ul>
</div>
<div>
<h3>Transparent contacts</h3>
<figure>
{% image spin-lifetime/fig_4d_difference_larger_lifetime.svg %}
<figcaption>Fit to parallel field data from Fig. 4d of W. Han, et al.</figcaption>
</figure>
<ul class="equation">
{% include spin-lifetime-values.html id="d_2" %}
</ul>
</div>
<p>{% reference PhysRevLett.105.167202 --file spintronics %}</p>
{% endslide %}
{% slide#dichalcogenides : Dichalcogenides %} <div>
<div class="one-third">
<h3>Outline</h3>
<ol>
<li>Motivation</li>
<li>Valley physics</li>
<li>Superconducting phase</li>
<li>Future work</li>
</ol>
</div>
{% slide div.two-thirds.omega %}
<h3>Motivation</h3>
<ol>
<li>Active and emerging field</li>
<li>Monolayer graphene-like system with new valley physics</li>
<li>Potentially a natural spin valve material</li>
</ol>
{% endslide %}
<div class="crystal-image full center"></div>
{% endslide %}
{% slide : Effective Hamiltonian %}
<div class="lattice-image half"></div>
<ul class="half omega">
<li>\( \mathrm{MoS_2} \), \( \mathrm{WS_2} \), \( \mathrm{MoSe_2} \), \( \mathrm{WSe_2} \)</li>
<li>Similar to monolayer graphene:
two inequivalent valleys: \( \vect{K} \), \( \vect{K}' \)</li>
<li>Strong <strong>spin-orbit coupling</strong>
and <strong>inversion symmetry breaking</strong></li>
<li>Leads to opposite valley Berry curvature</li>
<li>Two state tight binding model: \( d_{z^2} \), and \( d_{xy} \), \( d_{x^2 - y^2} \)</li>
</ul>
{% slide div %}
<p class="full center">
$$
H_0^{τ σ} \exOfK =
a t \left(τ k_x σ_x + k_y σ_y \right) ⊗ I_2
+ \frac{Δ}{2} σ_z ⊗ I_2
- λ τ \left(σ_z - 1 \right) ⊗ S_z
$$
</p>
<p class="small full center">
$$
H_0^{τ σ} \exOfK =
\left[
\begin{matrix}
\dfrac{Δ}{2} & a t \left( τ k_x - i k_y \right) \\
a t \left( τ k_x + i k_y \right) & λ τ σ - \dfrac{Δ}{2}
\end{matrix}
\right]
$$
</p>
<p class="small full">{% reference PhysRevLett.108.196802 %}</p>
{% endslide %}
{% endslide %}
{% slide.bands : Energy Bands %}
<figure class="two-thirds">
{% image dichalcogenides/bands.svg %}
<figcaption>The eight energy bands for \( \mathrm{MoS_2} \).</figcaption>
</figure>
<div class="one-third omega">
<ul class="equation">
<li>\( Δ \)—band splitting</li>
<li>\( λ \)—spin splitting</li>
<li>\( τ \)—valley index</li>
<li>\( σ \)—spin index</li>
</ul>
<h3>\( \mathrm{MoS_2} \)</h3>
<ul class="equation">
<li>\( a t = 3.15 \: \text{Å eV} \)</li>
<li>\( Δ = 1.66 \: \text{eV} \)</li>
<li>\( 2 λ = 0.15 \: \text{eV} \)</li>
<li>\( μ = -0.83 \: \text{eV} \)</li>
</ul>
</div>
<p class="full omega">
$$
E_{τ σ}^n \exOfK =
\frac{1}{2} \left( λ τ σ
+ n \sqrt{ (2 a t)^2 \left\lvert \vect{k} \right\rvert^2
+ \left( Δ - λ τ σ \right)^2 } \right)
$$
</p>
{% endslide %}
{% capture dichalcogenides_optical_transitions %}
{% slide : Optical Transitions %}
<figure class="half">
{% image dichalcogenides/transitions.svg %}
<figcaption>Optical transition rates for \( H_0 \).</figcaption>
</figure>
<figure class="half omega">
{% image dichalcogenides/band_transitions.svg %}
<figcaption>Optical transitions strongly coupled to light polarization.</figcaption>
</figure>
<div class="half">
<p>
\( \vect{P}^{τ σ} \exOfK =
\frac{m_0}{ħ}
\left\langle u_+ \right\rvert ∇_{\vK} H_0^{τ σ} \exOfK
\left\lvert u_- \right\rangle \)
</p>
<p>
\( P_±^{τ σ} \exOfK = P_x^{τ σ} ± i P_y^{τ σ} \)
</p>
</div>
<ul class="half omega">
<li>Right circular polarization strongly couples to \( τ = + \) valley transitions</li>
<li>Left circular polarization strongly couples to \( τ = - \) valley transitions</li>
</ul>
<p class="small full">{% reference PhysRevLett.108.196802 %}</p>
{% endslide %}
{% endcapture %}
{{ dichalcogenides_optical_transitions }}
{% slide : Vally Hall effect %}
<figure class="half">
{% image dichalcogenides/hall.svg %}
<figcaption>Valley hall effect for electrons.</figcaption>
</figure>
<figure class="half omega">
{% image dichalcogenides/band_transitions.svg %}
<figcaption>Optical transitions strongly coupled to light polarization.</figcaption>
</figure>
<div class="half">
<h3 class="">Semiclassical equations</h3>
<p>\( \dot{\vect{r}} = ∇_{\vK} E \exOfK - \dot{\vect{k}} × \vect{Ω} \exOfK \)</p>
<p>\( \dot{\vect{k}} = - e \vect{E} - e \dot{\vect{r}} × \vect{B} \)</p>
<p>Anomalous velocity
\( \vect{v} = e \vect{Ω} \exOfK × \vect{E} \)</p>
</div>
<div class="half omega">
<h3 class="">Berry curvature</h3>
<p>\(
\vect{Ω}_{τ σ}^n \exOfK
= ∇_{\vK} × \left\langle u_{τ σ}^n \exOfK
\right\rvert i ∇_{\vK} \left\lvert u_{τ σ}^n \exOfK \right\rangle \)</p>
<p>Broken inversion symmetry</p>
<p>\( \vect{Ω}_{τ, σ}^n \exOfK = - \vect{Ω}_{-τ, σ}^n \exOfK ≠ 0 \)</p>
</div>
{% endslide %}
{% slide : BCS Superconductivity %}
<h3>Mean-field Hamiltonian</h3>
<p>
$$
H - μ N =
\sideset{}{}∑_{\vK σ} ξ_{\vK} c_{\vK σ}^† c_{\vK σ}
- \sideset{}{}∑_{\vK}
\left( \bar{Δ}_{\vK} c_{-\vK ↓} c_{\vK ↑}
+ Δ_{\vK} c_{\vK ↑}^† c_{-\vK ↓}^† \right)
$$
</p>
<figure class="half">
{% image dichalcogenides/bcs.svg %}
<figcaption>Region of allowed parings for fixed center-of-mass momentum.</figcaption>
</figure>
<div class="half omega">
<p>Number of available parings maximized when center-of-mass momentum is zero</p>
<h3>Quasiparticle operators</h3>
<p>\( b_{\vK σ} = σ \cos{θ_{\vK}} c_{\vK σ} + \sin{θ_{\vK}} c_{-\vK, -σ}^† \)</p>
<h3>Diagonalized</h3>
<p>\( \sideset{}{}∑_{\vK σ} λ_{\vK} b_{\vK σ}^† b_{\vK σ} \)</p>
</div>
{% endslide %}
{% slide : Induced Superconductivity %}
<h3>Intervalley pairing</h3>
<figure class="half">
{% image dichalcogenides/superconducting_states.svg %}
<figcaption>BCS pairs for induced superconducting states.</figcaption>
</figure>
<div class="half omega">
<ul class="full omega">
<li>\( a^ν_{τ σ} \)—orbital operators</li>
<li>\( b_α \)—quasiparticle operators</li>
<li>BCS pairs in opposite valleys</li>
<li>Reduces to standard BCS Hamiltonian
where \( α = τ = σ \) plays the role of the spin index</li>
<li>Not a singlet ground state: mixture of singlet and triplet states</li>
</ul>
<p class="small full center omega">
$$
\begin{equation}
H_V = -
\sideset{}{'}∑_{\vK} \sideset{}{}∑_{ν, τ} Δ_ν
{a^ν_{-τ ↓}}^† \exOfMK
{a^ν_{τ ↑}}^† \exOfK
+ \hc
\end{equation}
$$
</p>
<p class="small full center omega">
$$
\begin{equation}
H - μ N =
\sideset{}{'}∑_{\vK} \sideset{}{}∑_α λ_{\vK}^α b_{\vK α}^† b_{\vK α}
+ \sideset{}{'}∑_{\vK} \left(ξ_{\vK ↓} + λ_{\vK}^- \right) .
\end{equation}
$$
</p>
</div>
{% endslide %}
{{ dichalcogenides_optical_transitions }}
{% slide.sc-excitations : SC Optical Excitations %}
<figure class="half">
{% image dichalcogenides/excitations-1.svg %}
<figcaption>Induced superconducting optical transition rates for \( τ = + \).</figcaption>
</figure>
<figure class="half omega">
{% image dichalcogenides/excitations-2.svg %}
<figcaption>Induced superconducting optical transition rates for \( τ = - \).</figcaption>
</figure>
<div class="half">
<p>
\( \vect{P} \exOfK =
\frac{m_0}{ħ}
\left\langle Ω_f \right\rvert ∇_{\vK} H^{τ σ} \exOfK
\left\lvert Ω \right\rangle \)
</p>
<p>
\( P_± \exOfK = P_x ± i P_y \)
</p>
</div>
<div class="half omega">
<p>
\( \left\lvert Ω \right\rangle
= ∏_{\vK} b_{\vK ↑} b_{-\vK ↓} \left\lvert 0 \right\rangle \)
</p>
<p class="small">
\( \left\lvert Ω_f \right\rangle =
\begin{cases}
{c^+_α}^† \exOfK b_{-α} \exOfMK \left\lvert Ω \right\rangle & k > k_μ \\
{c^+_α}^† \exOfK b_{-α}^† \exOfMK \left\lvert Ω \right\rangle & k < k_μ
\end{cases} \)
</p>
</div>
{% endslide %}
{% slide : SC Optical Excitations %}
<h3>Compare to normal transitions</h3>
<figure class="half">
{% image dichalcogenides/excitations-closeup-1.svg %}
<figcaption>
Strong induced superconducting optical transition rates.
Dashed lines are \( H_0 \) transitions.
</figcaption>
</figure>
<figure class="half omega">
{% image dichalcogenides/excitations-closeup-2.svg %}
<figcaption>
Weak induced superconducting optical transition rates.
Dashed lines are \( H_0 \) transitions.
</figcaption>
</figure>
<ul class="full">
<li>Upper band excitations are now paired with lower band quasiparticle excitations</li>
<li>Valley-polarization coupling is retained even in the superconducting case</li>
<li>Contrast is reduced in an region around the chemical potential</li>
</ul>
{% endslide %}
{% slide : Future Work %}
<h3>Induced superconductivity</h3>
<ul>
<li>Only looked at \( \mathrm{MoS_2} \)</li>
<li>Can tune the parameters to understand how they affect the physics</li>
<li>Look at other properties of this state, e.g., magnetic susceptibility</li>
</ul>
<h3>Intrinsic superconductivity</h3>
<ul>
<li>Derived from density-density interactions</li>
<li>Already have the projected interaction term</li>
<li>Apply mean-field and an analogous analysis</li>
<li>Both intervalley and intravalley pairing</li>
</ul>
{% slide div %}
<p class="small one-third">
$$
H_V = - \sideset{}{'}∑_{\vK, \vK'}
v \left( \vK' - \vK \right) A \left( \vK, \vK' \right)
$$
</p>
<p class="small two-thirds omega">
$$
\begin{align}
A \left( \vK, \vK' \right) =
& B^2 \left( \vK, \vK' \right) \exInteration{+ ↑}{+ ↑}
\\ +
& B^2 \left( \vK', \vK\right) \exInteration{- ↓}{- ↓}
\\ +
& \left\lvert B \left( \vK, \vK' \right) \right\rvert^2
\left[
\exInteration{+ ↑}{- ↓}
\\ +
\exInteration{- ↓}{+ ↑}
\right]
\end{align}
$$
</p>
{% endslide %}
{% endslide %}