-
Notifications
You must be signed in to change notification settings - Fork 148
/
worker.py
executable file
·207 lines (166 loc) · 6.28 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--task', default='yelp', choices=['yelp'])
parser.add_argument('--mode', default='train', choices=['train', 'eval'])
parser.add_argument('--checkpoint-frequency', type=int, default=100)
parser.add_argument('--eval-frequency', type=int, default=10000)
parser.add_argument('--batch-size', type=int, default=30)
parser.add_argument("--device", default="/cpu:0")
parser.add_argument("--max-grad-norm", type=float, default=5.0)
parser.add_argument("--lr", type=float, default=0.001)
args = parser.parse_args()
import importlib
import os
import pickle
import random
import time
from collections import Counter, defaultdict
import numpy as np
import pandas as pd
import spacy
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
from tqdm import tqdm
import ujson
from data_util import batch
task_name = args.task
task = importlib.import_module(task_name)
checkpoint_dir = os.path.join(task.train_dir, 'checkpoint')
tflog_dir = os.path.join(task.train_dir, 'tflog')
checkpoint_name = task_name + '-model'
checkpoint_dir = os.path.join(task.train_dir, 'checkpoints')
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
# @TODO: move calculation into `task file`
trainset = task.read_trainset(epochs=1)
class_weights = pd.Series(Counter([l for _, l in trainset]))
class_weights = 1/(class_weights/class_weights.mean())
class_weights = class_weights.to_dict()
vocab = task.read_vocab()
labels = task.read_labels()
classes = max(labels.values())+1
vocab_size = task.vocab_size
labels_rev = {int(v): k for k, v in labels.items()}
vocab_rev = {int(v): k for k, v in vocab.items()}
def HAN_model_1(session, restore_only=False):
"""Hierarhical Attention Network"""
import tensorflow as tf
try:
from tensorflow.contrib.rnn import GRUCell, MultiRNNCell, DropoutWrapper
except ImportError:
MultiRNNCell = tf.nn.rnn_cell.MultiRNNCell
GRUCell = tf.nn.rnn_cell.GRUCell
from bn_lstm import BNLSTMCell
from HAN_model import HANClassifierModel
is_training = tf.placeholder(dtype=tf.bool, name='is_training')
cell = BNLSTMCell(80, is_training) # h-h batchnorm LSTMCell
# cell = GRUCell(30)
cell = MultiRNNCell([cell]*5)
model = HANClassifierModel(
vocab_size=vocab_size,
embedding_size=200,
classes=classes,
word_cell=cell,
sentence_cell=cell,
word_output_size=100,
sentence_output_size=100,
device=args.device,
learning_rate=args.lr,
max_grad_norm=args.max_grad_norm,
dropout_keep_proba=0.5,
is_training=is_training,
)
saver = tf.train.Saver(tf.global_variables())
checkpoint = tf.train.get_checkpoint_state(checkpoint_dir)
if checkpoint:
print("Reading model parameters from %s" % checkpoint.model_checkpoint_path)
saver.restore(session, checkpoint.model_checkpoint_path)
elif restore_only:
raise FileNotFoundError("Cannot restore model")
else:
print("Created model with fresh parameters")
session.run(tf.global_variables_initializer())
# tf.get_default_graph().finalize()
return model, saver
model_fn = HAN_model_1
def decode(ex):
print('text: ' + '\n'.join([' '.join([vocab_rev.get(wid, '<?>') for wid in sent]) for sent in ex[0]]))
print('label: ', labels_rev[ex[1]])
print('data loaded')
def batch_iterator(dataset, batch_size, max_epochs):
for i in range(max_epochs):
xb = []
yb = []
for ex in dataset:
x, y = ex
xb.append(x)
yb.append(y)
if len(xb) == batch_size:
yield xb, yb
xb, yb = [], []
def ev(session, model, dataset):
predictions = []
labels = []
examples = []
for x, y in tqdm(batch_iterator(dataset, args.batch_size, 1)):
examples.extend(x)
labels.extend(y)
predictions.extend(session.run(model.prediction, model.get_feed_data(x, is_training=False)))
df = pd.DataFrame({'predictions': predictions, 'labels': labels, 'examples': examples})
return df
def evaluate(dataset):
tf.reset_default_graph()
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as s:
model, _ = model_fn(s, restore_only=True)
df = ev(s, model, dataset)
print((df['predictions'] == df['labels']).mean())
import IPython
IPython.embed()
def train():
tf.reset_default_graph()
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config) as s:
model, saver = model_fn(s)
summary_writer = tf.summary.FileWriter(tflog_dir, graph=tf.get_default_graph())
# Format: tensorflow/contrib/tensorboard/plugins/projector/projector_config.proto
# pconf = projector.ProjectorConfig()
# # You can add multiple embeddings. Here we add only one.
# embedding = pconf.embeddings.add()
# embedding.tensor_name = m.embedding_matrix.name
# # Link this tensor to its metadata file (e.g. labels).
# embedding.metadata_path = vocab_tsv
# print(embedding.tensor_name)
# Saves a configuration file that TensorBoard will read during startup.
for i, (x, y) in enumerate(batch_iterator(task.read_trainset(epochs=3), args.batch_size, 300)):
fd = model.get_feed_data(x, y, class_weights=class_weights)
# import IPython
# IPython.embed()
t0 = time.clock()
step, summaries, loss, accuracy, _ = s.run([
model.global_step,
model.summary_op,
model.loss,
model.accuracy,
model.train_op,
], fd)
td = time.clock() - t0
summary_writer.add_summary(summaries, global_step=step)
# projector.visualize_embeddings(summary_writer, pconf)
if step % 1 == 0:
print('step %s, loss=%s, accuracy=%s, t=%s, inputs=%s' % (step, loss, accuracy, round(td, 2), fd[model.inputs].shape))
if step != 0 and step % args.checkpoint_frequency == 0:
print('checkpoint & graph meta')
saver.save(s, checkpoint_path, global_step=step)
print('checkpoint done')
if step != 0 and step % args.eval_frequency == 0:
print('evaluation at step %s' % i)
dev_df = ev(s, model, task.read_devset(epochs=1))
print('dev accuracy: %.2f' % (dev_df['predictions'] == dev_df['labels']).mean())
def main():
if args.mode == 'train':
train()
elif args.mode == 'eval':
evaluate(task.read_devset(epochs=1))
if __name__ == '__main__':
main()