-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
40 lines (35 loc) · 1.3 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Module: lwMCMC
# Author: Daniel Ryan Furman <[email protected]>
# License: MIT
# Release: lwMCMC 0.2
# Last modified : May 11 2021
# Github: https://github.com/daniel-furman/lwMCMC
import os
import sys
from setuptools import setup, find_packages
def read(fname):
return open(os.path.join(os.path.dirname(__file__), fname)).read()
with open('README.md') as f:
readme = f.read()
setup(
name="lwMCMC",
version="0.2",
author="Daniel Ryan Furman",
author_email="[email protected]",
description=("A parameter space sampling class for lightweight Bayesian inference. Running on a NumPy-based implementation of the Metropolis-Hastings algorithm."),
long_description="See documentation at https://github.com/daniel-furman/lwMCMC",
license="MIT",
keywords="bayesian-inference machine-learning statistical-modeling",
url="https://github.com/daniel-furman/lwMCMC",
packages=find_packages(),
install_requires=["numpy", "matplotlib", "pymc3"],
classifiers=[
"Development Status :: 3 - Alpha",
"Topic :: Utilities",
"License :: OSI Approved :: MIT License",
"Intended Audience :: Science/Research",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Topic :: Scientific/Engineering"
],
)