-
Notifications
You must be signed in to change notification settings - Fork 23
/
test-mt.cpp
345 lines (290 loc) · 7.29 KB
/
test-mt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/*
* The Mersenne Twister pseudo-random number generator (PRNG)
*
* This is an implementation of fast PRNG called MT19937, meaning it has a
* period of 2^19937-1, which is a Mersenne prime.
*
* This PRNG is fast and suitable for non-cryptographic code. For instance, it
* would be perfect for Monte Carlo simulations, etc.
*
* Written by Christian Stigen Larsen
* Distributed under the modified BSD license.
* 2015-02-17, 2017-12-06
*/
#define __STDC_FORMAT_MACROS
#include <float.h>
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <string>
#include <sys/resource.h>
#include <vector>
namespace mt {
#include "mersenne-twister.h"
}
namespace reference {
#include "reference/mt19937ar.h"
}
struct Benchmark {
uint32_t hash;
double best;
std::vector<double> times;
size_t its;
Benchmark() : hash(0xffffffff), best(9999999999), its(1)
{
}
};
struct Timer {
double mark_;
Timer() : mark_(rusage_self())
{
}
double rusage_self() const
{
struct rusage ru;
getrusage(RUSAGE_SELF, &ru);
return ru.ru_utime.tv_sec + ru.ru_utime.tv_usec / 1000000.0;
}
double elapsed_secs() const
{
return rusage_self() - mark_;
}
void reset()
{
mark_ = rusage_self();
}
};
template<class SEEDFUNC, class RANDFUNC>
#if defined(__clang__)
[[clang::optnone]]
#endif
static Benchmark benchmark_hashes(
SEEDFUNC set_seed,
RANDFUNC draw_u32,
const int passes = 15,
const size_t subiterations = 200000000ULL)
#if defined(__GNUC__)
# if !defined(__clang__)
__attribute__((optimize("-O0")))
# endif
#endif
;
template<class X, class Y>
#if defined(__clang__)
[[clang::optnone]]
#endif
static uint32_t benchmark_hash(
uint32_t seed,
uint64_t iterations,
X set_seed,
Y draw_u32)
#if defined(__GNUC__)
# if !defined(__clang__)
__attribute__((optimize("-O0")))
# endif
#endif
;
template<class X, class Y>
#if defined(__clang__)
[[clang::optnone]]
#endif
static uint32_t benchmark_hash(
uint32_t seed,
uint64_t iterations,
X set_seed,
Y draw_u32)
{
// Use a hash so that the compiler doesn't optimize away the for-loop
uint32_t hash = 0xffffffff;
set_seed(seed);
for ( uint64_t n = 0; n < iterations; ++n ) {
hash ^= draw_u32();
}
return hash;
}
template<class SEEDFUNC, class RANDFUNC>
#if defined(__clang__)
[[clang::optnone]]
#endif
static Benchmark benchmark_hashes(
SEEDFUNC set_seed,
RANDFUNC draw_u32,
const int passes,
const size_t subiterations)
{
Benchmark result;
result.its = subiterations;
for ( int pass = 0; pass < passes; ++pass ) {
Timer timer;
// use a different seed each time
result.hash ^= benchmark_hash(pass*19, subiterations, set_seed, draw_u32);
const double secs = timer.elapsed_secs();
result.times.push_back(secs);
if ( secs < result.best ) {
result.best = secs;
printf("\n %9.7fs ", result.best);
fflush(stdout);
} else {
printf(".");
fflush(stdout);
}
}
return result;
}
static double mean(const std::vector<double>& v)
{
double sum = 0;
for ( size_t n=0; n<v.size(); ++n )
sum += v[n];
return sum/v.size();
}
static double min(const std::vector<double>& v)
{
double out = DBL_MAX;
for ( size_t n=0; n<v.size(); ++n )
out = v[n] < out? v[n]: out;
return out;
}
static double max(const std::vector<double>& v)
{
double out = 0;
for ( size_t n=0; n<v.size(); ++n )
out = v[n] > out? v[n]: out;
return out;
}
static double stddev(const std::vector<double>& v)
{
double m = mean(v);
double sumsq = 0;
for ( size_t n=0; n<v.size(); ++n )
sumsq += (v[n] - m) * (v[n] - m);
return sqrt(sumsq/v.size());
}
/*
* Number of digits in number.
*/
static int digits(double n)
{
int d = 1;
n = floor(n);
while ( (n/=10) >= 1.0 )
++d;
return d;
}
/*
* Convert number to human readable string, i.e.
*
* - 12345 ==> 12.3 thousand
* - 1234567 ==> 1.2 million
* - etc.
*
* using the SHORT SCALE format (i.e., English
* variants such as "billion" = 10^9, instead of
* "milliard".
*/
static const char* sscale(double n, int decimals = 1)
{
static char s[32];
static const char* name[] = {
"",
"thousand",
"million",
"billion",
"trillion",
"quadrillion",
"quintillion",
"sextillion",
"septillion"
};
int exp = digits(n) <= 4? 0 : 3*((digits(n)-1)/3);
sprintf(s, "%1.*lf %s", decimals, n/pow(10, exp), name[exp/3]);
return s;
}
static void report(const Benchmark& res)
{
printf("\n");
printf(" min=%gs max=%gs mean=%gs stddev=%gs\n",
min(res.times), max(res.times), mean(res.times),
stddev(res.times));
const std::string best = sscale(res.its / min(res.times), 1);
const std::string worst = sscale(res.its / max(res.times), 1);
printf(" %s — %s numbers/second\n", worst.c_str(), best.c_str());
std::vector<double> persec;
for ( auto secs : res.times ) {
persec.push_back(res.its / secs);
}
printf("\n"
" R-code for plot:\n"
"\n"
" mean <- %g;\n"
" sd <- %g;\n"
" x <- seq(mean-4*sd, mean+4*sd, length=200);\n"
" y <- dnorm(x, mean=mean, sd=sd);\n"
" plot(x, y, type=\"l\", xlab=\"numbers / second\", ylab=\"\");\n"
" title(\"Mersenne Twister Performance\");\n",
mean(persec),
stddev(persec));
}
static void run_benchmark(const int passes)
{
Benchmark ref, our;
{
printf("\nTiming our implementation (best times over %d passes) ... ",
passes);
fflush(stdout);
our = benchmark_hashes(mt::seed, mt::rand_u32, passes);
report(our);
}
{
printf("\nTiming reference mt19937ar.c (best times over %d passes) ... ",
passes);
fflush(stdout);
ref = benchmark_hashes(reference::init_genrand, reference::genrand_int32,
passes);
report(ref);
}
const double ratio = ref.best / our.best;
printf("\n%g times %s than the reference (ratio of best runs)\n", ratio,
ratio > 1 ? "faster" : "slower");
if ( our.hash != ref.hash ) {
printf("Error: Our implementation produces incorrect numbers!\n");
}
}
int main(int argc, char** argv)
{
printf("Testing Mersenne Twister with reference implementation\n");
int benchmark_passes = 15;
if ( argc > 1 ) {
benchmark_passes = atoi(argv[1]);
}
const int passes = 2;
const uint32_t seeds = 5000;
const uint32_t start = 0;
const uint32_t stop = 5000;
for ( int pass=0; pass < passes; ++pass) {
for ( uint32_t seed = 0; seed < seeds; ++seed ) {
mt::seed(seed);
reference::init_genrand(seed);
if ( (seed % 100) == 0 ) {
printf("\r * Pass %d/%d %4" PRIu64 "%%", 1 + pass, passes,
100UL * uint64_t(seed)/uint64_t(seeds));
fflush(stdout);
}
for ( uint32_t n = start; n < stop; ++n ) {
uint32_t a = mt::rand_u32();
uint32_t b = reference::genrand_int32();
if ( a != b ) {
printf("\r * Pass %d/%d ERROR\n", 1 + pass, passes);
printf("\r seed=%" PRIu32
" n=%" PRIu32
" expected %" PRIu32
" got %" PRIu32 "\n", seed, n, b, a);
return 1;
}
}
}
printf("\r * Pass %d/%d OK \n", 1 + pass, passes);
}
run_benchmark(benchmark_passes);
return 0;
}