forked from Davidham3/STGCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
58 lines (46 loc) · 1.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# -*- coding:utf-8 -*-
import os
import argparse
import mxnet as mx
from mxnet import nd
from utils import math_graph
from data_loader import data_utils
from model.trainer import model_train
ctx = mx.gpu(0)
parser = argparse.ArgumentParser()
parser.add_argument('--num_of_vertices', type=int, default=228)
parser.add_argument('--n_his', type=int, default=12)
parser.add_argument('--n_pred', type=int, default=12)
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--save', type=int, default=10)
parser.add_argument('--order_of_cheb', type=int, default=3)
parser.add_argument('--kt', type=int, default=3)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--opt', type=str, default='adam')
parser.add_argument('--keep_prob', type=float, default=1.0)
parser.add_argument('--adj_path', type=str,
default='datasets/PeMSD7_W_228.csv')
parser.add_argument('--time_series_path', type=str,
default='datasets/PeMSD7_V_228.csv')
args = parser.parse_args()
print('Training configs: {}'.format(args))
n_his, n_pred = args.n_his, args.n_pred
order_of_cheb = args.order_of_cheb
# blocks: settings of channel size in st_conv_blocks / bottleneck design
blocks = [[1, 32, 64], [64, 32, 128]]
adj = math_graph.weight_matrix(args.adj_path)
L = math_graph.scaled_laplacian(adj)
cheb_polys = nd.array(math_graph.cheb_poly_approx(L, order_of_cheb))
# Data Preprocessing
PeMS_dataset = data_utils.data_gen(args.time_series_path, n_his + n_pred)
print('>> Loading dataset with Mean: {0:.2f}, STD: {1:.2f}'.format(
PeMS_dataset.mean,
PeMS_dataset.std
))
if __name__ == '__main__':
import shutil
logdir = './logdir'
if os.path.exists(logdir):
shutil.rmtree(logdir)
model_train(blocks, args, PeMS_dataset, cheb_polys, ctx, logdir=logdir)