-
Notifications
You must be signed in to change notification settings - Fork 41
/
test_transductive.py
147 lines (120 loc) · 5.55 KB
/
test_transductive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from __future__ import print_function
from __future__ import division
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import random
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
import torch.nn.functional as F
sys.path.append('./torchFewShot')
from torchFewShot.models.net import Model
from torchFewShot.data_manager import DataManager
from torchFewShot.losses import CrossEntropyLoss
from torchFewShot.optimizers import init_optimizer
from torchFewShot.utils.iotools import save_checkpoint, check_isfile
from torchFewShot.utils.avgmeter import AverageMeter
from torchFewShot.utils.logger import Logger
from torchFewShot.utils.torchtools import one_hot, adjust_learning_rate
parser = argparse.ArgumentParser(description='Test image model with 5-way classification')
# Datasets
parser.add_argument('-d', '--dataset', type=str, default='miniImageNet_load')
parser.add_argument('--load', default=True)
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=84,
help="height of an image (default: 84)")
parser.add_argument('--width', type=int, default=84,
help="width of an image (default: 84)")
# Optimization options
parser.add_argument('--train-batch', default=4, type=int,
help="train batch size")
parser.add_argument('--test-batch', default=1, type=int,
help="test batch size")
# Architecture
parser.add_argument('--num_classes', type=int, default=64)
parser.add_argument('--scale_cls', type=int, default=7)
parser.add_argument('--save-dir', type=str, default='')
parser.add_argument('--resume', type=str, default='', metavar='PATH')
# FewShot settting
parser.add_argument('--nKnovel', type=int, default=5,
help='number of novel categories')
parser.add_argument('--nExemplars', type=int, default=1,
help='number of training examples per novel category.')
parser.add_argument('--train_nTestNovel', type=int, default=6 * 5,
help='number of test examples for all the novel category when training')
parser.add_argument('--train_epoch_size', type=int, default=1200,
help='number of episodes per epoch when training')
parser.add_argument('--nTestNovel', type=int, default=15 * 5,
help='number of test examples for all the novel category')
parser.add_argument('--epoch_size', type=int, default=2000,
help='number of batches per epoch')
# Miscs
parser.add_argument('--phase', default='test', type=str)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--gpu-devices', default='3', type=str)
args = parser.parse_args()
def main():
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
sys.stdout = Logger(osp.join(args.save_dir, 'log_test_tranductive.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
print('Initializing image data manager')
dm = DataManager(args, use_gpu)
trainloader, testloader = dm.return_dataloaders()
model = Model(scale_cls=args.scale_cls, num_classes=args.num_classes)
# load the model
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
print("Loaded checkpoint from '{}'".format(args.resume))
if use_gpu:
model = model.cuda()
test(model, testloader, use_gpu)
def test(model, testloader, use_gpu):
accs = AverageMeter()
test_accuracies = []
model.eval()
with torch.no_grad():
for batch_idx , (images_train, labels_train, images_test, labels_test) in enumerate(testloader):
if use_gpu:
images_train = images_train.cuda()
images_test = images_test.cuda()
end = time.time()
batch_size, num_train_examples, channels, height, width = images_train.size()
num_test_examples = images_test.size(1)
labels_train_1hot = one_hot(labels_train).cuda()
labels_test_1hot = one_hot(labels_test).cuda()
cls_scores = model.test_transductive(images_train, images_test, labels_train_1hot, labels_test_1hot)
cls_scores = cls_scores.view(batch_size * num_test_examples, -1)
labels_test = labels_test.view(batch_size * num_test_examples)
_, preds = torch.max(cls_scores.detach().cpu(), 1)
acc = (torch.sum(preds == labels_test.detach().cpu()).float()) / labels_test.size(0)
accs.update(acc.item(), labels_test.size(0))
gt = (preds == labels_test.detach().cpu()).float()
gt = gt.view(batch_size, num_test_examples).numpy() #[b, n]
acc = np.sum(gt, 1) / num_test_examples
acc = np.reshape(acc, (batch_size))
test_accuracies.append(acc)
accuracy = accs.avg
test_accuracies = np.array(test_accuracies)
test_accuracies = np.reshape(test_accuracies, -1)
stds = np.std(test_accuracies, 0)
ci95 = 1.96 * stds / np.sqrt(args.epoch_size)
print('Accuracy: {:.2%}, std: :{:.2%}'.format(accuracy, ci95))
return accuracy
if __name__ == '__main__':
main()