-
Notifications
You must be signed in to change notification settings - Fork 20
/
evaluate_smiles2caption.py
34 lines (30 loc) · 1.34 KB
/
evaluate_smiles2caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import argparse
from os.path import join
from evaluation import text_translation_metrics
MODEL_TYPES = ['t5-v1_1', 'molt5']
MODEL_SIZES = ['small', 'base', 'large']
TASK = 'smiles2caption'
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', type=str, default='predictions/')
parser.add_argument('--log_fp', type=str, default='smiles2caption_eval.txt')
args = parser.parse_args()
log_io = open(args.log_fp, 'w+')
for model_size in MODEL_SIZES:
for model_type in MODEL_TYPES:
file_name = f'{model_type}-{model_size}-{TASK}.txt'
file_path = join('predictions', file_name)
bleu2, bleu4, rouge_1, rouge_2, rouge_l, meteor_score = \
text_translation_metrics.evaluate(
'allenai/scibert_scivocab_uncased', file_path, 512
)
log_io.write(f'For {file_name}\n')
log_io.write(f'bleu2: {round(bleu2, 3)}\n')
log_io.write(f'bleu4: {round(bleu4, 3)}\n')
log_io.write(f'rouge_1: {round(rouge_1, 3)}\n')
log_io.write(f'rouge_2: {round(rouge_2, 3)}\n')
log_io.write(f'rouge_l: {round(rouge_l, 3)}\n')
log_io.write(f'meteor_score: {round(meteor_score, 3)}\n')
log_io.write('\n')
log_io.flush()
log_io.close()