forked from cvlab-yonsei/MNAD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train.py
148 lines (119 loc) · 6.66 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import time
import argparse
from utils import *
import torch.optim as optim
import torch.utils.data as data
from model.utils import DataLoader
from torch.autograd import Variable
import torchvision.transforms as transforms
parser = argparse.ArgumentParser(description="MNAD")
parser.add_argument('--batch_size', type=int, default=4, help='batch size for training')
parser.add_argument('--test_batch_size', type=int, default=1, help='batch size for test')
parser.add_argument('--epochs', type=int, default=60, help='number of epochs for training')
parser.add_argument('--loss_compact', type=float, default=0.1, help='weight of the feature compactness loss')
parser.add_argument('--loss_separate', type=float, default=0.1, help='weight of the feature separateness loss')
parser.add_argument('--h', type=int, default=256, help='height of input images')
parser.add_argument('--w', type=int, default=256, help='width of input images')
parser.add_argument('--c', type=int, default=3, help='channel of input images')
parser.add_argument('--lr', type=float, default=2e-4, help='initial learning rate')
parser.add_argument('--method', type=str, default='pred', help='The target task for anoamly detection')
parser.add_argument('--t_length', type=int, default=5, help='length of the frame sequences')
parser.add_argument('--fdim', type=int, default=512, help='channel dimension of the features')
parser.add_argument('--mdim', type=int, default=512, help='channel dimension of the memory items')
parser.add_argument('--msize', type=int, default=10, help='number of the memory items')
parser.add_argument('--num_workers', type=int, default=2, help='number of workers for the train loader')
parser.add_argument('--num_workers_test', type=int, default=1, help='number of workers for the test loader')
parser.add_argument('--dataset_path', type=str, default='./data', help='directory of data')
parser.add_argument('--dataset_type', type=str, default='ped2', help='type of dataset: ped2, avenue, shanghai')
parser.add_argument('--exp_dir', type=str, default='./log/ped2_2', help='directory of log')
# parser.add_argument('--dataset_type', type=str, default='avenue', help='type of dataset: ped2, avenue, shanghai')
# parser.add_argument('--exp_dir', type=str, default='./log/avenue', help='directory of log')
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]= "0"
torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance
# Loading dataset
train_folder = args.dataset_path+"/"+args.dataset_type+"/training/frames"
test_folder = args.dataset_path+"/"+args.dataset_type+"/testing/frames"
train_dataset = DataLoader(train_folder, transforms.Compose([transforms.ToTensor()]),
resize_height=args.h, resize_width=args.w, time_step=args.t_length-1)
test_dataset = DataLoader(test_folder, transforms.Compose([transforms.ToTensor()]),
resize_height=args.h, resize_width=args.w, time_step=args.t_length-1)
train_size = len(train_dataset)
test_size = len(test_dataset)
train_batch = data.DataLoader(train_dataset, batch_size = args.batch_size,
shuffle=True, num_workers=args.num_workers, drop_last=True)
test_batch = data.DataLoader(test_dataset, batch_size = args.test_batch_size,
shuffle=False, num_workers=args.num_workers_test, drop_last=False)
# Model setting
assert args.method == 'pred' or args.method == 'recon', 'Wrong task name'
if args.method == 'pred':
from model.final_future_prediction_with_memory_spatial_sumonly_weight_ranking_top1 import *
model = convAE(args.c, args.t_length, args.msize, args.fdim, args.mdim)
else:
from model.Reconstruction import *
model = convAE(args.c, memory_size = args.msize, feature_dim = args.fdim, key_dim = args.mdim)
params_encoder = list(model.encoder.parameters())
params_decoder = list(model.decoder.parameters())
params = params_encoder + params_decoder
optimizer = torch.optim.Adam(params, lr = args.lr)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer,T_max =args.epochs)
model.cuda()
# Report the training process
log_dir = os.path.join('./exp', args.dataset_type, args.method, args.exp_dir)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# orig_stdout = sys.stdout
# f = open(os.path.join(log_dir, 'log.txt'),'w')
# sys.stdout= f
# Training
loss_func_mse = nn.MSELoss(reduction='none')
m_items = F.normalize(torch.rand((args.msize, args.mdim), dtype=torch.float), dim=1).cuda() # Initialize the memory items
for epoch in range(args.epochs):
labels_list = []
model.train()
start = time.time()
for j,(imgs) in enumerate(train_batch):
imgs = Variable(imgs).cuda()
if args.method == 'pred':
(outputs, _, _, m_items, softmax_score_query, softmax_score_memory,
separateness_loss, compactness_loss) = model.forward(imgs[:,0:12], m_items, True)
else:
(outputs, _, _, m_items, softmax_score_query, softmax_score_memory,
separateness_loss, compactness_loss) = model.forward(imgs, m_items, True)
optimizer.zero_grad()
if args.method == 'pred':
loss_pixel = torch.mean(loss_func_mse(outputs, imgs[:,12:]))
else:
loss_pixel = torch.mean(loss_func_mse(outputs, imgs))
loss = loss_pixel + args.loss_compact * compactness_loss + args.loss_separate * separateness_loss
loss.backward(retain_graph=True)
optimizer.step()
pass
scheduler.step()
print('----------------------------------------')
print('Epoch:', epoch+1)
# Save the model and the memory items
print('Training of Epoch {} is finished'.format(epoch + 1))
if (epoch + 1) % 5 == 0:
torch.save(model, os.path.join(log_dir, 'model_{}.pth'.format(epoch + 1)))
torch.save(m_items, os.path.join(log_dir, 'keys_{}.pt'.format(epoch + 1)))
print('Saving model of {} in {}'.format(epoch + 1, log_dir))
pass
if args.method == 'pred':
print('Loss: Prediction {:.6f}/ Compactness {:.6f}/ Separateness {:.6f}'.format(
loss_pixel.item(), compactness_loss.item(), separateness_loss.item()))
else:
print('Loss: Reconstruction {:.6f}/ Compactness {:.6f}/ Separateness {:.6f}'.format(
loss_pixel.item(), compactness_loss.item(), separateness_loss.item()))
print('Memory_items:')
print(m_items)
print('----------------------------------------')
pass
print('Training is finished')
# Save the model and the memory items
torch.save(model, os.path.join(log_dir, 'model.pth'))
torch.save(m_items, os.path.join(log_dir, 'keys.pt'))
# sys.stdout = orig_stdout
# f.close()