-
Notifications
You must be signed in to change notification settings - Fork 2
/
runExperimentsSOCGSGLasso.py
381 lines (349 loc) · 10.2 KB
/
runExperimentsSOCGSGLasso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
if __name__ == "__main__":
import os
# Computing parameters.
os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6
# General imports
import numpy as np
import os, sys
import time
import datetime
import matplotlib.pyplot as plt
from algorithms import runCG, SOCGS, NCG
from auxiliaryFunctions import randomPSDGenerator
"""
----------------------------Graphical Lasso experiment--------------------
"""
ts = time.time()
timestamp = (
datetime.datetime.fromtimestamp(ts)
.strftime("%Y-%m-%d %H:%M:%S")
.replace(" ", "-")
.replace(":", "-")
)
from feasibleRegions import PSDUnitTrace
from functions import (
GraphicalLasso,
QuadApproxGLasso,
QuadApproxInexactHessianLBFGS,
)
# Parse the arguments of the function.
import argparse
parser = argparse.ArgumentParser("Parse algorithm settings")
parser.add_argument(
"--max_time",
type=int,
required=True,
help="Maximum time the algorithms are run in seconds.",
)
parser.add_argument(
"--dimension",
type=int,
required=True,
help="Dimensionality of the problem n. This results in matrices of size nxn.",
)
parser.add_argument(
"--accuracy",
type=float,
required=True,
help="Accuracy to which the problem is solved.",
)
parser.add_argument(
"--lambda_value",
type=float,
required=True,
help="Lambda value for l2 regularization.",
)
parser.add_argument(
"--delta_value",
type=float,
required=True,
help="Delta value for smoothing of logdet.",
)
parser.add_argument(
"--max_iter",
type=int,
required=True,
help="Maximum number of inner iterations in second-order algorithms.",
)
parser.add_argument(
"--type_solver",
type=str,
required=True,
help="CG subsolver to use in SOCGS: CG, ACG, PCG, LazyACG.",
)
parser.add_argument(
"--known_primal_gap",
type=str,
required=True,
help="True if the primal gap is known, false otherwise.",
)
args = parser.parse_args()
TIME_LIMIT = args.max_time
TIME_LIMIT_REFERENCE_SOL = int(2.0 * args.max_time)
dimension = args.dimension
tolerance = args.accuracy
lambdaVal = args.lambda_value
deltaVal = args.delta_value
maxIter = args.max_iter
type_of_solver = args.type_solver
if(args.known_primal_gap == 'True'):
known_primal_gap = True
else:
if(args.known_primal_gap == 'False'):
known_primal_gap = False
else:
assert False, 'Invalid known_primal_gap argument'
# #Problem dimension n for the matrix. The resulting matrix will have size nxn.
# dimension = int(sys.argv[1])
# #Regularization parameter used in the 2 norm.
# lambdaVal = float(sys.argv[2])
# #Small delta used to make the problem smooth.
# deltaVal = float(sys.argv[3])
# #Time limit spent calculating the reference solution and running the algorithm.
# TIME_LIMIT_REFERENCE_SOL = int(5*int(sys.argv[4]))
# TIME_LIMIT = int(sys.argv[4])
# #Tolerance to which we will solve the problem.
# tolerance = float(sys.argv[5])
# #Maximum number of inner iterations that we will have in the SOCGS and NCG algorithm.
# maxIter = int(sys.argv[6])
# Declare function.
solution = randomPSDGenerator(dimension, 0.5, 1.0)
solution /= np.trace(solution)
covariance = np.linalg.inv(solution)
fun = GraphicalLasso(dimension, covariance, lambdaVal)
# Declare feasible region
feasibleRegion = PSDUnitTrace(int(dimension * dimension))
# Declare quadratic approximations.
funQuadApprox = QuadApproxGLasso(dimension, lambdaVal, delta=deltaVal)
# Number of samples that are going to be used to build the LBFGS approximation to the Hessian.
numSamplesHessian = 10
funQuadApproxLBFGS = QuadApproxInexactHessianLBFGS(
int(dimension * dimension), numSamplesHessian
)
# Line search used. In this case exact line search.
typeOfStep = "EL"
# Create random starting point. Completely random.
alpha_0 = np.linspace(1, 10, dimension)
alpha_0 /= np.sum(alpha_0)
x_0 = np.diag(alpha_0).flatten()
S_0 = []
for i in range(dimension):
auxMat = np.zeros((dimension, dimension))
auxMat[i, i] = 1.0
S_0.append(auxMat.flatten())
alpha_0 = alpha_0.tolist()
print("Solving the problem over the Spectrahedron polytope.")
if not os.path.exists(os.path.join(os.getcwd(), "Spectrahedron")):
os.makedirs(os.path.join(os.getcwd(), "Spectrahedron"))
##Run to a high Frank-Wolfe primal gap accuracy for later use?
from auxiliaryFunctions import exportsolution, dump_pickled_object
print("\nFinding optimal solution to high accuracy using ACG.")
nameAlg, xTest, FWGapTest, fValTest, timingTest, distTest, iterationTest = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance / 2.0,
TIME_LIMIT_REFERENCE_SOL,
np.zeros(len(x_0)),
FWVariant="ACG",
typeStep=typeOfStep,
criterion="DG",
)
fValOpt = fValTest[-1]
tolerance = max(tolerance, min(np.asarray(FWGapTest)))
if not os.path.exists(os.path.join(os.getcwd(), "Spectrahedron", "Solutions")):
os.makedirs(os.path.join(os.getcwd(), "Spectrahedron", "Solutions"))
# Saving solution for future use
exportsolution(
os.path.join(
os.getcwd(),
"Spectrahedron",
"Solutions",
"Solution_Spectrahedron_"
+ str(timestamp)
+ "_size"
+ str(dimension)
+ "_TypeStep_"
+ typeOfStep
+ ".txt",
),
sys.argv,
fValOpt,
xTest,
min(np.asarray(FWGapTest)),
dimension,
)
dump_pickled_object(
os.path.join(
os.getcwd(),
"Spectrahedron",
"Solutions",
"function_" + str(timestamp) + ".pickle",
),
fun,
)
# #Importing solution
# from auxiliaryFunctions import importSolution, load_pickled_object
# fValOpt, xTest, importTolerance, sizeSol = importSolution(os.path.join(os.getcwd(), "GLasso", "Solution_GLassoPSD_2020-05-29-05-10-31_size100_TypeStep_EL.txt"))
# tolerance = max(tolerance, importTolerance)
# fun = load_pickled_object(os.path.join(os.getcwd(), "GLasso", "function_2020-05-29-05-10-31.pickle"))
# Create list to store all the results.
results = []
# Run SOCGS
print("\nSOCGS.")
resultsSOCGS1 = SOCGS(
x_0,
S_0,
alpha_0,
fun,
funQuadApproxLBFGS,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
criterion="PG",
criterionRef=fValOpt,
TypeSolver=type_of_solver,
updateHessian=False,
known_primal_gap = known_primal_gap,
maxIter=maxIter,
)
resultsSOCGS1 = list(resultsSOCGS1)
resultsSOCGS1[0] = "SOCGS-LBFGS"
# Run SOCGS with LBFGS updates
print("\nSOCGS with LBFGS updates.")
resultsSOCGS = SOCGS(
x_0,
S_0,
alpha_0,
fun,
funQuadApprox,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
criterion="PG",
criterionRef=fValOpt,
TypeSolver=type_of_solver,
updateHessian=False,
maxIter=maxIter,
)
# Run Newton CG
print("\nRunning NCG.")
FrankWolfeProjNewton = NCG(0.96, 1 / 6.0, 2.0)
resultsNCG = FrankWolfeProjNewton.run(
x_0,
S_0,
alpha_0,
fun,
funQuadApprox,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
criterion="PG",
criterionRef=fValOpt,
TypeSolver="CG",
maxIter=maxIter,
updateHessian=False,
)
# Run Lazy ACG
print("\nRunning Lazy ACG.")
resultsAFWLazy = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="LazyACG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# CG
print("\nRunning CG.")
resultsFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="CG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# ACG
print("\nRunning ACG.")
resultsAFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="ACG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# PCG
print("\nRunning PCG.")
resultsPFW = runCG(
x_0,
S_0,
alpha_0,
fun,
feasibleRegion,
tolerance,
TIME_LIMIT,
xTest,
FWVariant="PCG",
typeStep=typeOfStep,
criterion="PG",
criterionRef=fValOpt,
)
# Store all the results.
results = [
resultsSOCGS1,
resultsSOCGS,
resultsNCG,
resultsAFWLazy,
resultsFW,
resultsAFW,
resultsPFW,
]
# Export results
# Save the data from the run.
from auxiliaryFunctions import export_results
export_results(
os.path.join(os.getcwd(), "Spectrahedron"),
results,
sys.argv,
timestamp,
fValOpt,
)
# Plot the results.
from auxiliaryFunctions import plot_results
plot_results(
os.path.join(os.getcwd(), "Spectrahedron"),
results,
sys.argv,
timestamp,
fValOpt,
save_images=True,
)