You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am using ImageNet 64x64 and run the code with the following command : python train.py --dataset I64_hdf5 --shuffle --batch_size 128 --num_G_accumulations 1 --num_D_accumulations 1 --num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 --G_attn 32 --D_attn 32 --G_nl relu --D_nl relu --SN_eps 1e-8 --BN_eps 1e-5 --adam_eps 1e-8 --G_ortho 0.0 --G_init xavier --D_init xavier --G_eval_mode --G_ch 32 --D_ch 32 --ema --use_ema --ema_start 2000 --test_every 5000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 --which_best FID --num_epochs 1000 --num_workers 8 --parallel
and getting this error:
File "train.py", line 229, in <module>
main()
File "train.py", line 226, in main
run(config)
File "train.py", line 184, in run
metrics = train(x, y)
File "/BigGAN-PyTorch/train_fns.py", line 42, in train
split_D=config['split_D'])
File "/miniconda3/envs/biggan2-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/miniconda3/envs/biggan2-env/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 140, in forward
return self.module(*inputs, **kwargs)
File "/miniconda3/envs/biggan2-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/BigGAN-PyTorch/BigGAN.py", line 443, in forward
D_out = self.D(D_input, D_class)
File "/miniconda3/envs/biggan2-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "/BigGAN-PyTorch/BigGAN.py", line 403, in forward
out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
RuntimeError: CUDA error: device-side assert triggered
I have used the prepare_data script in the repository as follows:
python make_hdf5.py --dataset I64 --batch_size 256 --data_root data
python calculate_inception_moments.py --dataset I64_hdf5 --data_root data
The interesting thing is when I create a "mini dataset" by randomly selecting 500 images per label from original ImageNet dataset code runs fine. What could be the problem? How can I solve this issue ?
The text was updated successfully, but these errors were encountered:
Hello,
I am using ImageNet 64x64 and run the code with the following command :
python train.py --dataset I64_hdf5 --shuffle --batch_size 128 --num_G_accumulations 1 --num_D_accumulations 1 --num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 --G_attn 32 --D_attn 32 --G_nl relu --D_nl relu --SN_eps 1e-8 --BN_eps 1e-5 --adam_eps 1e-8 --G_ortho 0.0 --G_init xavier --D_init xavier --G_eval_mode --G_ch 32 --D_ch 32 --ema --use_ema --ema_start 2000 --test_every 5000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 --which_best FID --num_epochs 1000 --num_workers 8 --parallel
and getting this error:
I have used the prepare_data script in the repository as follows:
The interesting thing is when I create a "mini dataset" by randomly selecting 500 images per label from original ImageNet dataset code runs fine. What could be the problem? How can I solve this issue ?
The text was updated successfully, but these errors were encountered: